Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir.
Kosinüs teoremi geometride üçgen üzerinde iki kenarı ve aralarındaki açı verildiği zaman bilinmeyen kenarı bulmak amacı ile kullanılan formül olmaktadır. - Cos90: 0 sayısına eşittir.
cos(120) = -cos(60)
Bu değer üzerinden gedildiği vakit cos 120 değeri = - 3/5 olarak ifade edilir. Aynı zamanda bunu - 0,6 şekilde de anlatmak ve yazmak mümkün.
Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir. Bir üçgenin A açısının komşu kenarının hipotenüse uzunluğuna oranlanması şeklinde bulunabilir. Tanjant kısaca tan olarak ifade edilir.
Bir üçgende bulunan x açısının tam karşısındaki kenarın komşu kenara olan oranı tan değeri olarak ifade edilir. Tan 90 = tanımsızdır.
İlgili 29 soru bulundu
Açının sinüs değerinin kosinüs değerine bölümü ile de tanjant değeri bulunabilir. Yani 1 tan=1 sin/1 cos'tür.
Kosinüs. α ölçülü açıya komşu olan dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün kosinüsü denir. cos α ile gösterilir. Tanjant. α ölçülü açının karşısındaki dik kenarın uzunluğunun komşusundaki dik kenarın uzunluğuna oranına, α ölçüsünün tanjantı denir.
Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın x eksenine göre koordinatıdır. Orijinden noktaya çizilen bir doğrunun x ekseniyle yaptığı açı kullanılarak ya da aynı açıya sahip bir dik üçgende, bu açının yanındaki kenarın hipotenüse bölümüyle hesaplanır.
Yani sinüs tek bir fonksiyondur, kosinüs ise çift.
Asıl değerler
Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır.
Bu doğrultuda cos 37 değeri; 4/5 ya da 0,8 olarak hesaplanır.
Sin37 değeri sayısal olarak 0,6 ya da 3/5 kesri değerine eşittir. Fizik problemlerinde bu değer direkt olarak verilebilir. Sin37 Nasıl Bulunur? Sinüs 37 derecenin karşılığı 0,6 sayısına eşittir.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
cos 36°nın tam değeri (x + y)/2x = (1 + √5)/4, yaklaşık değeri de 0.8090.
Trigonometri konularından olan sinüs konusunun bir takım değerleri bulunmaktadır. Bu değerler arasında bulunan sinüs 53 derece değeri 0,8'e eşittir.
Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez. Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x). Mutlak degerli ifadelerin tamamı çift fonksiyondur.
Kosinüs bir üçgende açının karşısındaki kenarın hipotenüse oranını temsil eder. Örneğin B açısının kosinüsü b/a dır. Tanjant bir üçgende açının karşısındaki kenarın aynı açının komşusu olan kenarına oranıdır. Örneğin B açısının tanjantı b/c dir.
açısının ordinatıyla apsisinin oranına denir. Dik üçgende ise açının komşu dik kenarının karşı dik kenarına oranıdır.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
cot(0)= cos(0) sin(0) elde edilir.
Tan2x Açılımı ve Konu Anlatımı
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır. Tan2x = tan(x+x) olarak ifade edilmektedir.
4-sin90=1'dir.
30 derecenin sinüsü Birim çember ya da 30-60-90 üçgeninden, bunun 1 bölü 2 olduğunu hatırlayabilirsiniz, ya da hesap makinamıza bakalım, kolay. Önce derece modunda olduğunuza emin olun, Sin 30, eşittir sıfır virgül 5. O halde burası,1 bölü 2 bölü 2'den, 1 bölü 4 çıkacak.
Sekant, trigonometrik bir fonksiyondur. Trigonometrik kosinüs fonksiyonunun çarpmaya göre tersi olarak tanımlanır. sec veya sc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün komşu dik kenara oranına sekant denir.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri