cos2x = 1 - 2sin²x şeklinde olur.
Bilindiği gibi Sin2x=2.sinx.cosx şeklinde ifade edilir. Cos2x tamamı ile farklılık gösterir. Cos2x = cos2x - sin2x şeklinde olmaktadır. Eşitlik çok önemli bir değer sahiptir.
karşı kenar/komsu kenar = a/b = sinA/cosA şeklindedir. Kotanjant kısaca cot olarak ifade edilir. Formülü cot(A)= 1/tan(A) = cos(A)/sin(A) = b/a şeklindedir.
Kosinüs işlevi (cos), komşu kenarın hipotenüse oranıdır.
Dört kenarının da uzunluğu birbirine eşittir. Karşılıklı kenarları birbirine paraleldir. Dört açısı da 90 derecedir. İç açılarının toplamı 360 derecedir.
İlgili 40 soru bulundu
Karede de yine aynı formül kullanılması gerekir. Karenin alanının hesaplanması için taban ile yüksekliğin çarpılması gerekmektedir. Karenin bir kenarı a ise kare alan formülü a x a ya da a^2 formülünden hesaplanabilmektedir.
Sıfır dışında, herhangi bir sayının sıfırıncı kuvveti bire eşittir. Sıfırın herhangi bir pozitif kuvveti ise sıfıra.
Kosinüs teoremi, iki kenar ve aralarındaki açı verildiğinde üçüncü kenarı bulmada ve üç kenar da verildiğinde açıları hesaplamada kullanılır. Ayrıca bu teorem, sadece dik üçgenlerde uygulanan Pisagor bağıntısını tüm üçgenler için geneller.
2. f(x) = cos(x) işlevi dik üçgende Komşu dik kenarın hipotenüse oranıdır. Koordinat düzleminde "x" ekseni olarak tabir edilir.
Çift fonksiyon
Geometriksel olarak ifade etmek gerekirse, bir çift fonksiyonun grafiği, y eksenine göre simetriktir. Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez. Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x).
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Bütün konuyu iyi öğrenmeyi hedefleyerek aşağıda paylaşılan basamakları uygularsanız konunun zannedildiği kadar zor olmadığını, aksine zevkli bir konu olduğunu da göreceksiniz. Trigonometri dik üçgendeki açılar ve kenar uzunları arasındaki oranların bilgisidir. Konuyu geometriyle bağlayan en önemli alan da dik üçgendir.
Açının sinüs değerinin kosinüs değerine bölümü ile de tanjant değeri bulunabilir. Yani 1 tan=1 sin/1 cos'tür. Tanjant formülleri matematik ve geometrinin birçok dalında işinize yarayacaktır. Bir 1 tan ya da tan 1 şeklinde ifade edilen değer 1 derecelik açının tanjant değeri demektir.
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır.
Kosinüs, trigonometrik bir fonksiyon. Cos kısaltmasıyla ifade edilir. Kosinüs'ün dik üçgende gösterimi. cosA=a/h Kosinüs'ün periyodu.
Bir dik üçgende komşu açının kenarının hipotenüse bölünmesi ile elde edilen değere kosinüs denilmektedir. Bu değer A açısının kosinüs değeri ise Bu cosA şeklinde gösterilmektedir.
Kosinüs teoremine göre bir üçgende bulunan bir kenarın karesi, diğer iki kenarın kareleri toplamından bu iki kenar ile bu kenarlar arasındaki açının kosinüsü çarpımının iki katı eksiğine eşit olarak ifade edilebilir.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Lambert kosinüs yasasına göre, optikte, ideal dağınık bir şekilde yansıtılan yüzeyden veya ideal dağınık bir ısıtıcıdan gözlemlenen radyant yoğunluğu veya parlaklık yoğunluğu, gözlemcinin görüş yeri ve yer arasında kalan teta açısı ile doğru orantılıdır.
Sinüs teoremi; bir üçgende, iç açıların sinüsü ile karşılarındaki kenarların uzunluklarının oranının sabit olduğunu söyler. Mesela, bu üçgende, Bu 30 derecelik bu da 45derecelik bir açı İç açıların toplamı 180 derece olduğu için, üçüncü açı 180 eksi 45 eksi 30, Yani 180 eksi 75'ten, 105 derece olur.
Yine aynı yüzyılda yaşayan El-Battani ile trigonometri büyük bir gelişme kaydetmiştir. El- Battani Batı'ya sinüs fonksiyonunu tanıtmış, tanjant, cotanjant ve küresel üçgenlerdeki cosinüs teoremini bulmuştur.
Pisagor teoremi bize ne söylüyordu, en uzun olmayan kenarların karelerinin toplamı, en uzun kenarın karesine eşit. Yani a kare artı 21'in karesi eşittir 35'in karesi olacak.
Örneğin; 65'in karesi n = 6 × (6 + 1) = 42 ve 5'in karesi 25 olduğundan 4225 olur.
0'ın Karesi Neye Eşittir? 0'ın karesi yine 0'ın kendisiyle çarpılması ile bulunur. 0'ın hem kendisi ile hem de diğer sayılar ile çarpılması sonucunda 0 elde edilir. Bu durumda da 0'ın karesi yine 0'a eşit olmaktadır.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri