4. f(x) = cotx işlevi dik üçgende Komşu dik kenarın karşı dik kenara oranıdır.
açısının ordinatıyla apsisinin oranına denir. Dik üçgende ise açının komşu dik kenarının karşı dik kenarına oranıdır.
Kosinüs işlevi (cos), komşu kenarın hipotenüse oranıdır.
Tanjant. α ölçülü açının karşısındaki dik kenarın uzunluğunun komşusundaki dik kenarın uzunluğuna oranına, α ölçüsünün tanjantı denir. tan α ile gösterilir. Kotanjant. α ölçülü açıya komşu olan dik kenarın uzunluğunun karşısındaki dik kenarın uzunluğuna oranına, α ölçüsünün kotanjantı denir.
COT işlevi, radyan cinsinden verilen bir açının kotanjantını döndürür.
İlgili 29 soru bulundu
karşı kenar/komsu kenar = a/b = sinA/cosA şeklindedir. Kotanjant kısaca cot olarak ifade edilir. Formülü cot(A)= 1/tan(A) = cos(A)/sin(A) = b/a şeklindedir.
4. f(x) = cotx işlevi dik üçgende Komşu dik kenarın karşı dik kenara oranıdır.
commanding officer of troops (cot) i.
Bir üçgendeki x açısının karşısında bulunan kenarın komşu kenara olan oranı tanjant olarak ifade edilmektedir. Kotanjant hesaplaması ise bir x açısının komşu kenarı ile kendi karşısındaki kenara oranı olarak ifade edilmektedir.
Kotanjant, tanjant fonksiyonunun çarpmaya göre tersidir şeklinde ifade edilir. Buradan anlaşılacağı üzere kotanjant 1 / açının tanjant değerine, bununla birlikte Bir açının kosinüs değeri / Diğer açının sinüs değerine" ve aynı zamanda da diğer komşu kenar / hipotenüs değerine eşit olarak ifade edilmektedir.
Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez. Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x). Mutlak degerli ifadelerin tamamı çift fonksiyondur.
Yani sinüs tek bir fonksiyondur, kosinüs ise çift.
Kosinüs teoremi, iki kenar ve aralarındaki açı verildiğinde üçüncü kenarı bulmada ve üç kenar da verildiğinde açıları hesaplamada kullanılır.
Bir dik üçgende hipotenüs en uzun, "karşı" kenar verilen bir açının karşısındaki, "komşu" kenar ise verilen bir açının yanındaki kenardır. Dik üçgenlerin kenarlarını tanımlamak için, özel kelimeler kullanırız.
Asıl değerler. , y2 = x olarak tanımlanabilir. y = arcsin(x) fonksiyonu sin(y) = x olarak ifade edilebilir. sin(y) = x'yi ifade eden birçok y sayısı vardır. Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb.
Trigonometrik sinüs fonksiyonunun tersi olarak da tanımlanabilir. cosec veya csc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün karşı dik kenara oranına kosekant denir. Kosekant ayrıca bir açının tümlerinin sekantına eşittir.
Tanjant fonksiyonunun mucidi olarak kabul edilen Habeş el-Hâsib de bu yüzyılda yaşamıştır. Yine aynı yüzyılda yaşayan El-Battani ile trigonometri büyük bir gelişme kaydetmiştir. El- Battani Batı'ya sinüs fonksiyonunu tanıtmış, tanjant, cotanjant ve küresel üçgenlerdeki cosinüs teoremini bulmuştur.
Sin ve tan da açı büyüdükçe değer büyür , cos ve cot'da açı büyüdükçe değer küçülür.
Tan2x Açılımı ve Konu Anlatımı
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır. Tan2x = tan(x+x) olarak ifade edilmektedir.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
MS 830'da Habash al-Hasib al-Marwazi ilk kotanjant tablosunu üretti.
cot(0)= cos(0) sin(0) elde edilir.
Diğer bir ifadeyle esas ölçü [0°, 360°) aralığındadır. Derece cinsinden verilen pozitif açılarda, açı 360° ye bölünür. Elde edilen kalan esas ölçüdür. Derece cinsinden verilen negatif yönlü açılarda, açının mutlak değeri 360° ye bölünür; kalan 360° den çıkarılarak esas ölçü bulunur.
cos2x = 1 - 2sin²x şeklinde olur.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri