Dik üçgende dik kenarlardan bir 8 diğeri 15 olduğu zaman hipotenüs 17 olmalıdır. Üçgenler bu sayıların katları şeklinde de olabilmektedir. Dik üçgende iki dik kenardan biri 7 diğeri 24 olduğunda hipotenüs 25 olmak zorundadır. Üçgen bu sayıların katları şeklinde de olabilmektedir.
8 15 17 ÜÇGENİNİN ÖZELLİKLERİ
Üçgenlerde ve dik üçgenlerde bazı özel durumlar bulunmaktadır. Bu özel dik üçgenlerden bir tanesi de 8 15 17 üçgenidir. Dik üçgenlerde dik kenarların uzunluklarının karelerinin toplamı bize hipotenüsün karesini vermektedir. Bu özel durum ise tüm kenarların tam sayı olmasıdır.
Açılarına göre özel üçgenler; 30-60-90 üçgeni, 30-30-120 üçgeni, 45-45-90 üçgeni, 15-75-90 üçgeni olarak dörde ayrılırken, kenarlarına göre üçgenler ise 3-4-5 üçgeni, 8-15-17 üçgeni, 5-12-13 üçgeni ve 7-24-25 üçgeni olarak sınıflandırılmıştır.
5 birimlik kenarın karşısı 23, 12 birimlik kenarın karşısı 67, 13 birimlik kenarın karşısı 90 derece olan üçgen. en çok bilinen özel üçgenlerden birisi. kenarların karşılarına gelen açılar sırasıyla;5'e 23,12'ye 67,13'e 90'dır.ayrıca nickten de anlaşabileceği üzere en sevdiğim üçgendir.
Pisagor teoremine göre özel bir üçgen olan 7 24 25 üçgeni sadece 7 24 ve 25 olarak değil bu sayılarla orantılı olan üçgenler olarak da karşımıza çıkabilmektedir. Bu özel üçgenin kenar uzunlukları 7 metre 24 metre 25 metre olabileceği gibi 14 cm 48 cm 50 cm de olabilmektedir.
İlgili 41 soru bulundu
Örneğin (3,4,5) bir Pisagor üçlüsüdür.
30 60 90 üçgeni dik üçgendir. Hipotenüsün yarısı 30 derecenin karşısındaki kenardır. 60 derecenin karşısındaki kenar 30 derecenin kenarının kök 3 katıdır. 90 derecenin karşısında bulunan kenar 30 derecenin önündeki kenarın iki katıdır.
bir dik üçgenin iki dik kenarının biri 3 ve 3'ün katı diğeri de 4 ve 4'ün katı olduğu zaman hipotenüs 5 ve 5'in katı olmaktadır. (3-4-5), (6-8-10), (9-12-15) bu özel üçgene örnek verilebilir.
iç açıları 0, 0, ve pi radyan olan üçgendir. dördüncü yoksa, 3 5 8 oynamak için kurulan üçgen. bunun köşelerinden biri bulunamazsa "eh bari pis 7'li doğrusu çizelim" denir. bermuda seytan ucgeni gibi bi seydir. 3 5 8 ucgenine bir kez giren universite ogrencilerinin bir daha derslerde gorulememesinin nedeni budur.
Bir dik üçgenin sahip olduğu dik kenarlarının uzunlukları 3 ve 4 ile orantılı dik açının gördüğü kenar (hipotenüs) 5 ile orantılı durumdadır. Başka bir ifadeyle kenar uzunluklar 3-4-5 ile orantılı bir üçgen görüldüğünde bu üçgenin kesinlikle bir dik üçgen olduğu kanısına varılabilir.
Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Geometrinin en temel konusu özel üçgenler ise üç gruba ayrılır. Bunlar sırasıyla dik üçgen, ikizkenar üçgen ve eşkenar üçgendir.
Üçgenler; kenarlarına göre; eşkenar üçgen, çeşitkenar üçgen, ikizkenar üçgen gibi adlar alırken; açılarına göre de; eşit açılı (eşkenar) üçgen, dar açılı üçgen, geniş açılı üçgen, dik açılı üçgen ... gibi adlar alırlar. Üçgenlerin iç açılarının toplamı 180°, dış açılarının toplamı 360° dır.
Bu üçgenlerden biri de 5 12 13 üçgeni olmaktadır. 5 12 13 üçgenin kenar uzunlukları 5 12 13 sayısıyla orantılı olarak artıp azalma göstermektedir. 5 12 13 üçgenin uzunlukları 5 cm 12 cm 13 cm olabilirken aynı zamanda 10 metre 24 metre ve 26 metre de olabilir. Örnek : 5 12 13/ 10 24 26/ 20 48 52/ 15 36 49 şeklinde.
Kenarlarına Göre Üçgenler
Üçgenleri kenar uzunluklarına göre üçe ayırabiliriz. • Eşkenar Üçgen: Üç kenar uzunluğu da birbirine eşit olan üçgenlere denir. İkizkenar Üçgen: İki kenar uzunluğu birbirine eşit olan üçgenlere denir. Çeşitkenar Üçgen:Üç kenar uzunluğu da birbirinden farklı olan üçgenlere denir.
Bununla birlikte, belirli açılar için hesap makinesi kullanmadan da trigonometrik oranları hesaplamak mümkündür. Bunun nedeni, kenarlarının oranlarını bildiğimiz iki özel üçgen olmasıdır! Bu iki üçgen, 45-45-90 üçgeni ve 30-60-90 üçgenidir.
5 birim olan kenarı gören açının ölçüsü 90 derece. 4 birim olan kenarı gören açının ölçüsü 53.13 derece. 3 birim olan kenarı gören açının ölçüsü 36.87 derecedir.
- 90 dereceden bir dikme inildiği vakit, taban kenarı ikiye böler. - Aynı zamanda 90 dereceden inen dikme, ikiye bölünen kenarların uzunluğuna eşittir. - 45 derece karşısındaki kenar uzunluklarının çarpımının yarısı üçgenin alanını verir. - Sabit açı ve kenarları olduğu için, kolayca işlem yapma özelliğine sahiptir.
Üçgen Kuralı: Taşların mevcut konumunda herhangibir değişiklik olmadan hamle sırasının rakibe verilmesidir.
30 60 90 ÜÇGENİ KURALI NEDİR? 30 derecenin gördüğü kenarın uzunluğu hipotenüs uzunluğunun yarısıdır. 60 derecenin gördüğü kenarın uzunluğu ise 30 derecenin gördüğü kenarın √3 katıdır. 90 derecenin gördüğü kenarın uzunluğu ise 30 derecenin gördüğü kenar uzunluğunun 2 karıdır.
Pisagor Üçgenleri
Kenar uzunlukları bir Pisagor üçgeninin tam sayı katı olan üçgenler de birer Pisagor üçgenidir. Aşağıda bazı Pisagor üçgenlerinin kenar uzunlukları verilmiştir. 6-8-10, 9-12-15, 12-16-20, 15-20-25 ... 10-24-26, 15-36-39, 20-48-52 ...
30 30 120 üçgeni bir ikizkenar üçgendir. İki tane eş 30 60 90 üçgeninin birleşmesi ile oluşmuştur. 30 30 120 üçgeninde 120 derece olan açıdan inen yükseklik, açıortay, kenarortay ve kenar orta dikmeleri eştir. Bir ABC üçgeninde A açısı = 120 derece, B açısı = 30 derece, C açısı = 30 derecedir.
Büyük açının karşısında da büyük kenar olması gerekmektedir. Bu üçgenin açı oranları sırasıyla 37 53 90 derecedir. Üçgen de geçen 3 4 5 kavramları kenar uzunluklarını ifade eden oranlardır. 37 derecenin karşısında 3 birim, 53 derecenin karşısında 4 birim ve 90 derecenin karşısında 5 birim vardır.
Bir üçgenin kenar uzunlukları a, b, c olarak ifade edildiği zaman kosinüs teoremi c2=a2 + b2 - 2abcos(C) şeklinde olmaktadır. Üçgenin alanı bulunurken, üçgenin taban uzunluğu ile yüksekliğinin çarpımının 2'ye bölünmesi ile üçgenin alanı bulunmuş olmaktadır.
Pisagor bağıntısı her dik üçgende olduğu gibi bu dik üçgende de geçerlidir. 45 45 90 üçgeninin kuralı ise şu şekildedir: 45 derecelik açıların gördüğü kenar uzunluğuna a birim ise, 90 derecelik açının gördüğü kenar uzunluğu a√ 2 birim boyutundadır.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri