Parametrik olmayan istatistik terimi çok zaman da verilerin ölçülme ölçeği özelliklerine yani orijinal olarak kategorik olmalarına (yani isimsel veya sırasal ölçekli olmasına) ve niceliksel ölçekli veriler için mümkün olan matematik işlemlerin ve istatistik ölçümlerinin geçerli olmamasına da dayanır.
Parametrik testlerde ham veriler üzerinden ortalama, varyans gibi ölçütler elde edilerek işlemler yapılır. Parametrik olmayan testlerde ise ham veriler sıralanır ve sıra numaraları verilir. İşlemler bu sıra numaraları üzerinden yapılır. Parametrik testler parametrik olmayan testlere göre daha güçlü testlerdir.
Parametrik istatistik, verilerin rastgele dağılım esasına uyduğunu kabul eden ve olasılık dağılımı parametrelerine göre çıkarımlar yapan istatistik dalıdır. En iyi bilinen ilkel istatistik yöntemleri parametriktir. Genellikle parametrik yöntemler, parametrik olmayanlara göre daha fazla kabullenme yaparlar.
Veriler, çoğu zaman parametrik testlerin uygulanma koşullarını karşılayamadıklarından, içerisinde katı varsayımların bulunmadığı, nonparametrik testler kullanılabilir. Nonparametrik testler için çoğu zaman, verilerin, rassal ve bağımsız olarak elde edilmesi ve nominal veya ordinal ölçek kullanılması yeterlidir.
Merkezi limit teoremine göre eğer veriler normal dağılıma uygun olmasalar dahi, 30 ya da daha fazla sayıda gözleme sahipsek, parametrik testleri kullanabiliyoruz. Aritmetik ortalamalar standart sapmadan daha düşük olsa dahi sanki verilerimiz normal dağılıma sahipmiş gibi parametrik testler kullanabiliyoruz.
İlgili 38 soru bulundu
Parametrik olmayan testler, anakütle ile ilgili hiçbir varsayımda bulunmayan testlerdir. Değişkenlerin ölçeklerinin ad (nominal), sıra (ordinal) veya aralık (interval) olması durumunda tercih edilirler.
Aradaki farkı çok basit bir şekilde açıklamak gerekirse parametrik testler ortalamalar üzerinden çalışırken parametrik olmayan testler medyan değer üzerinde çalışır. Medyan değer sıralanmış bir veri setindeki orta değer olarak basitçe tanımlanabilir.
Tanımlayıcı istatistik kısmında normal dağılım testi için ortalama değeri (mean) ve median (medyan) değerinin birbirine yakın sonuçlar olması, veri setinin normal dağılıma sahip olduğunu göstermektedir.
İstatistiki bazı konuları baz alarak oluşturulan parametreleri ile yapılan birçok işlev parametrik olarak değerlendirilmektedir. Parametrik belirli ölçümler ile belirli konuların oluşturulmasını sağlamaktadır. Parametrik kelime manası olarak ise bir veya birden fazla parametre olarak tanımlanmaktadır.
Duyarlılık analizi olarak da bilinen parametrik analiz, farklı geometrik veya fiziksel parametrelerin veya her ikisinin sorunun çözümü üzerindeki etkisinin incelenmesidir.
Kısacası, ANOVA bir parametrik çıkarımsal metodu olup anakütle ortalamaları arasında farkın olup olmadığını sınamak için kullanılır.
Parametrik olmayan testler, verilerin belirli dağılım varsayımlarını karşılamadığı durumlarda kullanılır. Bu testler, verilerin dağılımı veya varyansı hakkında spesifik bir varsayım yapmazlar. Parametrik olmayan testler, örneğin Mann-Whitney U testi, Wilcoxon işaret testi, Kruskal-Wallis testi gibi testlerdir.
Diğer istatistiksel yöntemlerde olduğu gibi regresyon analizi de parametrik ve parametrik olmayan yöntemler olarak incelenebilir. Parametrik yöntemlerin kullanımı güçlü varsayımlar gerektirirken, parametrik olmayan yöntemlerde bu varsayımlar gerekli değildir.
İşaret Testinin Temel İlkesi
İşaret testi, verilerin medyanını değerlendirmek için kullanılan bir parametrik olmayan istatistiksel testtir. Temel ilkesi, örneklem verilerindeki sıralamaları kullanarak medyan değerinin belirli bir hipoteze göre test edilmesidir.
İstatistiksel parametrik testler, popülasyon ortalaması ve varyansı hakkındaki hipotezleri test etmek için kullanılan bir istatistiksel analiz türüdür.
İşte bu nokta çok önemli: Normal dağılmak, ya da dağılmamak… İstatistiksel hipotez testi aşamasında normal dağılım varsayımına bağlı kaldığımızda, parametrik testler üzerinden analizlerimizi gerçekleştiriyoruz. Kısaca sayısal ölçümlerimiz normal dağılıma uygun olduğunda parametrik testleri kullanacağız.
Verilerin normal dağılıma uygun olup olmadığını ortaya koymak amacıyla çeşitli normallik testlerinden yararlanmak mümkündür. Bu testler arasında en bilinenleri Ki-Kare, Kolmogorow-Smirnov, Lilliefors ve Shapiro – Wilk normallik testleridir.
İki ya da daha fazla örneklem ortalamasının anlamlı farklılık gösterip göstermediğini test eder. Tek yönlü varyans analizinin (One-Way ANOVA ) non-parametrik halidir. Anovanın sayıltıları karşılanmaz ise bu testi yapmamız gerekecektir.
İki Ortalama Arasındaki Farkın Önemlilik Testi. Ölçümle belirtilen sürekli bir değişken yönünden bağımsız iki grup arasında fark olup olmadığını test etmek için kullanılan bir önemlilik testidir.
✓Kruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır.
Normallik ve homojenlik varsayımları sağlanmadığında Non-parametrik testler kullanılır. Şöyleki; Bağımsız gruplardaki t testi yerine; Mann whitney U testi.
Kruskal-Wallis Yöntemi: İkiden fazla muamele grubunun söz konusu olduğu deneylere elde edilen veriler varyans analizinin ön şartlarından uzaklaşmış durumda iseler, gruplar arası farkın önemi parametresiz test yöntemi olan Kruskal-Wallis yöntemi ile kontrol edilebilir.
Hipotez, Araştırma Hipotezi İstatistiksel Hipotez olmak üzere iki tipte sınıflandırılabilir.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri