Örneğin sin(0) = 0, aynı zamanda sin(π) = 0, sin(2π) = 0 vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, aynı zamanda arcsin(0) = π, arcsin(0) = 2π vb.
Sin 0 = 0 eşitliği olur.
Sinüs. α ölçülü açının gördüğü dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün sinüsü denir. sin α ile gösterilir. Kosinüs. α ölçülü açıya komşu olan dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün kosinüsü denir. cos α ile gösterilir.
Sinüs ve Kosinüs fonksiyonları
1. f(x) = sin(x) işlevi dik üçgen'de karşı dik kenarın hipotenüse oranıdır. Koordinat Düzleminde "y" ekseni olarak tabir edilir. Bu işlevin tanım aralığı [-1,1] dir. Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
İlgili 28 soru bulundu
Yarıçapın karesinden bir yayın sinüs karesi çıkarılır ve bu değerin karekökü alınırsa, çeyrek daireyi tümler açının sinüsü (ya da aynı yayın kosinüsü) elde edilir.
30 derecenin sinüsü Birim çember ya da 30-60-90 üçgeninden, bunun 1 bölü 2 olduğunu hatırlayabilirsiniz, ya da hesap makinamıza bakalım, kolay. Önce derece modunda olduğunuza emin olun, Sin 30, eşittir sıfır virgül 5. O halde burası,1 bölü 2 bölü 2'den, 1 bölü 4 çıkacak.
Sinx ile beraber cosx trigonometrik fonksiyon olarak ifade edilmiştir. Özellikle geometri üzerinden üçgenleri incelerken trigonometrik fonksiyon olarak sinx ve cosx ön plana çıkar. Uzun adlar ile sinüs ve kosinüs olarak bilinen yapılar olarak öne çıkar.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün (dik açının karşısında kalan kenar) birbirine oranıdır.
Sinüs alan formülü Alan (ABC) = Sinüs A açısı x b x c x 1/2 şeklinde bulunur. Bazı değerleri ve kuralları bilmek işlem kolaylığı sağlar. Dik üçgen ise; dik kenarın kendisi olur. Hipotenüsü olmayan 2 kenarın çarpılarak ikiye bölünmesi sonucunda alan hesabı yapılmaktadır.
4-sin90=1'dir.
Bu iki fonksiyonun grafiklerini incelerseniz, bunun neden böyle olduğunu kolayca anlarsınız. Kanıtlamayacağımızı söyledik ama sinüs x'in türevinin kosinüs x olduğunu bilmek ileride çok işimize yarayacak. Peki, ya, kosinüs x'in türevi? Evet, kosinüs x'in, x'e göre türevi, eksi sinüs x'tir!
Sekant, trigonometrik bir fonksiyondur. Trigonometrik kosinüs fonksiyonunun çarpmaya göre tersi olarak tanımlanır. sec veya sc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün komşu dik kenara oranına sekant denir.
Tek fonksiyon
Geometriksel olarak ifade etmek gerekirse, bir tek fonksiyonun grafiği, orijine göre simetriktir Yani orijine göre 180 derece döndürüldükten sonra bile grafiği değişmez. Tek fonksiyonlara örnek; x, x3, sin(x), sinh(x) ve erf(x).
Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir. Bir üçgenin A açısının komşu kenarının hipotenüse uzunluğuna oranlanması şeklinde bulunabilir.
Kosinüs teoremi geometride üçgen üzerinde iki kenarı ve aralarındaki açı verildiği zaman bilinmeyen kenarı bulmak amacı ile kullanılan formül olmaktadır. - Cos90: 0 sayısına eşittir.
cos2x = 1 - 2sin²x şeklinde olur. Yazılmış olan cos2x ifadesinin açılımlarından bir diğeri de sin²li formül olmaktadır. cos2x = cos²x - sin²x şeklinde verilmiş olan açılımında bu kez sin²x görüldüğü yere "1-cos²x" yazılabilir. cos2x = 2cos²x - 1 şeklinde olur.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Sinüs 53 derece değeri fizik problemlerinde yapılan hesaplamalarda kullanılmaktadır. Aynı zamanda geometrinin 3-4-5 üçgeni alan ve kenar hesaplarında karşıya çıkmaktadır. Soruların doğru cevabına ulaşılması adına 0,8 değerinin kullanılması yeterli olacaktır. Ya da 4/5 kesrinin kullanılması da doğru sonuca ulaştırır.
Sin37 demek, sinüs 37 derece anlamına gelmektedir. Bu değere üçgen konusunda ihtiyaç olabilir. Sin37 değeri sayısal olarak 0,6 ya da 3/5 kesri değerine eşittir. Fizik problemlerinde bu değer direkt olarak verilebilir.
Sinüs fonksiyonunun tersi arcsinüstür. y = arcsin(x) fonksiyonu sin(y) = x olarak ifade edilebilir. sin(y) = x'i ifade eden birçok y sayısı vardır. Örneğin sin(0) = 0, aynı zamanda sin(π) = 0, sin(2π) = 0 vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, aynı zamanda arcsin(0) = π, arcsin(0) = 2π vb.
Bir çemberin çevresi 360 eş parçaya bölündüğü zaman bu eş yay parçalarından birini gören ; köşesi merkezde olan açının ölçüsüne 1 derece (1o ) denir. 1o nin 60 ta birine 1 dakika (1') denir. 1' nın 60 ta birine 1 saniye (1'') denir.
EXP tuşu 106, 10-9 gibi on sayısının kuvvetlerinin girilmesinde kullanılır.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri