Sin2x = 2.
Sin2x = 2.sinx.cosx ile ifade edilir. Açılım her bir açının yarısının alacak şekilde kullanıldığını anlatır. Bu formül bazı sorularda açık verip onun yarısının veya 2 mislinin sinüs değeri aranması halinde tercih edilmektedir.
Cos 2x veya Kosinüs 2x aynı zamanda çift açılı formül olarak da bilinmektedir. İçinde çift açı bulunmaktadır. İki sayının farkı ve toplamı trigonometrik fonksiyonlar ile alakalı ifadeler tarafından yönlendirilir. Bilindiği gibi Sin2x=2.sinx.cosx şeklinde ifade edilir.
Sinüs, Sin şeklinde ifade edilir. Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir.
cos2x = 1 - 2sin²x şeklinde olur. Yazılmış olan cos2x ifadesinin açılımlarından bir diğeri de sin²li formül olmaktadır. cos2x = cos²x - sin²x şeklinde verilmiş olan açılımında bu kez sin²x görüldüğü yere "1-cos²x" yazılabilir. cos2x = 2cos²x - 1 şeklinde olur.
İlgili 21 soru bulundu
4. f(x) = cotx işlevi dik üçgende Komşu dik kenarın karşı dik kenara oranıdır.
Asıl değerler
Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır.
4-sin90=1'dir.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
Kosinüs teoremi geometride üçgen üzerinde iki kenarı ve aralarındaki açı verildiği zaman bilinmeyen kenarı bulmak amacı ile kullanılan formül olmaktadır. - Cos90: 0 sayısına eşittir.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
Sekant, trigonometrik bir fonksiyondur. Trigonometrik kosinüs fonksiyonunun çarpmaya göre tersi olarak tanımlanır. sec veya sc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün komşu dik kenara oranına sekant denir.
Sinx ile beraber cosx trigonometrik fonksiyon olarak ifade edilmiştir. Özellikle geometri üzerinden üçgenleri incelerken trigonometrik fonksiyon olarak sinx ve cosx ön plana çıkar. Uzun adlar ile sinüs ve kosinüs olarak bilinen yapılar olarak öne çıkar.
Kosinüs işlevi (cos), komşu kenarın hipotenüse oranıdır.
30 derecenin sinüsü Birim çember ya da 30-60-90 üçgeninden, bunun 1 bölü 2 olduğunu hatırlayabilirsiniz, ya da hesap makinamıza bakalım, kolay. Önce derece modunda olduğunuza emin olun, Sin 30, eşittir sıfır virgül 5. O halde burası,1 bölü 2 bölü 2'den, 1 bölü 4 çıkacak.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Sin37 demek, sinüs 37 derece anlamına gelmektedir. Bu değere üçgen konusunda ihtiyaç olabilir. Sin37 değeri sayısal olarak 0,6 ya da 3/5 kesri değerine eşittir. Fizik problemlerinde bu değer direkt olarak verilebilir.
TanA=sinA/cosA şeklinde bulunur. CotA= cosA/sinA şeklinde bulunur. TanA .
cot(0)= cos(0) sin(0) elde edilir.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Bu değerlerle sin20'yi hesaplayabilirsiniz. Zincirlerin hesaplanması aşağıdaki gibidir: hesaplanan: sin20 = 3/5 = 0.6 Sin20 Diğer trigonometrik fonksiyonlar ve matematiksel görevlerle birlikte kullanılır. Ek olarak, SIN20 diğer tüm sinüs fonksiyonları olarak da kullanılır.
Ters Trigonometrik Fonksiyonlar. Trigonometrik fonksiyonlar bir açı ölçüsünü o açının karşılık geldiği trigonometrik oranla eşleyen fonksiyonlardır. Ters trigonometrik fonksiyonlar da bu eşlemeleri tersine çeviren, yani trigonometrik oranları açı ölçüleri ile eşleyen fonksiyonlardır.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri