Trigonometrinin kökeni M.Ö. 2000-3000'li yıllara, Babilliler'e kadar uzanmaktadır. Babilliler'in trigonometriye en büyük katkıları daireyi 360 parçaya bölerek bugünkü birim çemberin temelini atmış olmalarıdır. Babilliler'in dışında üçgenin kenar ve açılarıyla Mısırlılar ve Eski Yunanlılar da ilgilenmişlerdir.
İlk trigonometrik tablo görünüşe göre artık "trigonometrinin babası" olarak bilinen (Nicaealı - İznikli) Hipparchus (MÖ 180-125) tarafından derlendi. Hipparchus, bir dizi açı için bu açılara karşılık gelen yay ve kiriş değerlerini tablo haline getiren ilk kişiydi.
Trigonometri ilminin kurucusu. İslâm matematik ve astronomi âlimlerinin önde gelenlerinden olup “mühendis” ve “hâsib” lakaplarıyla da tanınır; hayatı hakkında fazla bilgi yoktur.
Trigonometri (Yunanca trigōnon "üçgen" + metron "ölçmek"), üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı.
Trigonometri olmayınca otomobiller yürümez, trenler gitmez, uçaklar uçmaz, santrallar enerji üretmezdi. Çember, bilim ve teknikte olduğu kadar sanatta, mimari tasarımlarda ve gündelik yaşamımızda da önemlidir.
İlgili 32 soru bulundu
Trigonometri, üreticilerin otomobillerden zikzak makaslara kadar her şeyi yaratmalarına olanak veren sektörde önemli bir rol oynamaktadır. Mühendisler, makine, alet ve ekipmanlarda kullanılan mekanik parçaların boyutlarını ve açılarını belirlemek için trigonometrik ilişkilere güvenirler.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Trigonometrik fonksiyonlar açılara dayanır ve matematikçiler genellikle ölçüm birimi olarak radyan kullanır. π, tam bir daire 2π radyanlık bir açıyı kaplayacak şekilde tanımlanan radyan cinsinden ölçülen açılarda önemli bir rol oynar. 180°'nin açı ölçüsü π radyan ve 1° = π/180 radyan'a eşittir.
Bir üçgende bulunan x açısının tam karşısındaki kenarın komşu kenara olan oranı tan değeri olarak ifade edilir. Tan 90 = tanımsızdır.
Bütün konuyu iyi öğrenmeyi hedefleyerek aşağıda paylaşılan basamakları uygularsanız konunun zannedildiği kadar zor olmadığını, aksine zevkli bir konu olduğunu da göreceksiniz. Trigonometri dik üçgendeki açılar ve kenar uzunları arasındaki oranların bilgisidir. Konuyu geometriyle bağlayan en önemli alan da dik üçgendir.
Ebü'l Vefa (Buzcan 940 – Bağdat 998)
Özellikle bugün Trigonometride görülen pek çok , temel tanım, kavram ve formülleri bilim dünyasına ilk sunan bilgindir.Objektif olarak yazılmış matematik ve astronomi tarihi kitaplarında adını görmek mümkündür.
9.sınıf Matematik | Trigonometri -1 - YouTube.
8. Sınıf Trigonometri 1 (TEOG) - Konu Anlatımı ve Soru Çözümleri - YouTube.
Bir 1 tan ya da tan 1 şeklinde ifade edilen değer 1 derecelik açının tanjant değeri demektir. Bu değer 1 derecelik açının sin değerinin 1 derecelik açının cos değerine bölünmesi ile bulunur.
Sinüs. α ölçülü açının gördüğü dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün sinüsü denir. sin α ile gösterilir. Kosinüs. α ölçülü açıya komşu olan dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün kosinüsü denir.
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
Sinüs ve Kosinüs fonksiyonları
1. f(x) = sin(x) işlevi dik üçgen'de karşı dik kenarın hipotenüse oranıdır. Koordinat Düzleminde "y" ekseni olarak tabir edilir. Bu işlevin tanım aralığı [-1,1] dir. Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz.
Örneğin sin(0) = 0, aynı zamanda sin(π) = 0, sin(2π) = 0 vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, aynı zamanda arcsin(0) = π, arcsin(0) = 2π vb.
Düz bir zeminde tam düzgün bir çember çizmek her zmaan bu oranı ve pi sayısını verir. Çember büyüsün veya küçüksün fark etmez. Çünkü burada düz bir çember icin bir oran ve orantı kuralı vardır. Bu yüzden pi sayısı 5 değil 3,14....
Parayı Kim Buldu? Pi Sayısını Kim İcat Etti? Bir dairenin çevresinin çapına olan oranını ifade eden pi sayısının, tarihte ilk kez Yunan matematikçi Arşimet tarafından doğru bir şekilde hesaplandığı tahmin edilmektedir.
π değeri açısal alanda 1 birim için 180 dereceye denk gelmekte. Bu bir birim değeri açıda 180 uzunlukta ise 3,14.... Değerine sahip bu sebeple 2 tane π değeri 360 Derece olur.
Trigonometrik fonksiyonlar, trigonometrik oranlar olarak bilinen açılarla ilişkili olan fonksiyonlardır. Bu fonksiyonlar, genellikle sinüs ("sin"), kosinüs ("cos") ve tanjant ("tan") olarak adlandırılır. İleri düzeyde sekant ("sec"), kosekant ("csc") ve kotanjant ("cot") gibi fonksiyonlar da kullanılabilir.
Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir. Bir üçgenin A açısının komşu kenarının hipotenüse uzunluğuna oranlanması şeklinde bulunabilir.
Radyan, bir dairede yarıçap uzunluğundaki yay parçasını gören merkez açıya eşit açı ölçme birimidir. 1 radyan 180π ya da yaklaşık 57,2958 derecedir (57°17′45″).
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri