İstatistiksel analizlerde parametrik testler denildiğinde akla gelen başlıca testler şunlardır: T-testleri. Varyans analizi (ANOVA)
Tek Yönlü ANOVA'nın varsayımları karşılandığı için parametrik ve parametrik olmayan test sonuçları benzer çıktı. Varsayımlar karşılanmasaydı, parametrik ve parametrik olmayan testler farkı sonuçlar üretebilirdi. Varsayımlar sağlanıyorsa, parametrik olan testi kullanmak daha doğru olur.
Parametrik testlerde ham veriler üzerinden ortalama, varyans gibi ölçütler elde edilerek işlemler yapılır. Parametrik olmayan testlerde ise ham veriler sıralanır ve sıra numaraları verilir. İşlemler bu sıra numaraları üzerinden yapılır. Parametrik testler parametrik olmayan testlere göre daha güçlü testlerdir.
İlgili 32 soru bulundu
Aradaki farkı çok basit bir şekilde açıklamak gerekirse parametrik testler ortalamalar üzerinden çalışırken parametrik olmayan testler medyan değer üzerinde çalışır. Medyan değer sıralanmış bir veri setindeki orta değer olarak basitçe tanımlanabilir.
Nonparametrik testler için çoğu zaman, verilerin, rassal ve bağımsız olarak elde edilmesi ve nominal veya ordinal ölçek kullanılması yeterlidir.
İstatistiksel hipotez testlerinde normal dağılım söz konusu olduğunda seçilecek olan test tipi, parametrik testlerdir. Başka bir ifadeyle sayısal değişkenlerimiz normal dağılım gösteriyorsa parametrik testlerle analizimizi yapıyoruz.
Parametrik istatistik, verilerin rastgele dağılım esasına uyduğunu kabul eden ve olasılık dağılımı parametrelerine göre çıkarımlar yapan istatistik dalıdır. En iyi bilinen ilkel istatistik yöntemleri parametriktir. Genellikle parametrik yöntemler, parametrik olmayanlara göre daha fazla kabullenme yaparlar.
Parametrik olmayan testler, anakütle ile ilgili hiçbir varsayımda bulunmayan testlerdir. Değişkenlerin ölçeklerinin ad (nominal), sıra (ordinal) veya aralık (interval) olması durumunda tercih edilirler.
Homojenlik testi, özellikle ANOVA (varyans analizi) gibi testlerde yaygın olarak kullanılır. Bu test, farklı gruplar arasındaki varyansların eşit olup olmadığını kontrol etmek için kullanılır. Eğer varyanslar eşitse, gruplar arasındaki farkın gerçek olduğu sonucuna varılabilir.
Diğer istatistiksel yöntemlerde olduğu gibi regresyon analizi de parametrik ve parametrik olmayan yöntemler olarak incelenebilir. Parametrik yöntemlerin kullanımı güçlü varsayımlar gerektirirken, parametrik olmayan yöntemlerde bu varsayımlar gerekli değildir.
Tanımlayıcı istatistik kısmında normal dağılım testi için ortalama değeri (mean) ve median (medyan) değerinin birbirine yakın sonuçlar olması, veri setinin normal dağılıma sahip olduğunu göstermektedir.
Varyans Analizi (veya ANOVA, İngilizce ANalysis Of VAriance sözcüklerinin kısaltması) istatistik bilim dalında, grup ortalamaları ve (gruplar içi ve gruplar arası varyasyon gibi) bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur.
Varyans Analizinin Varsayımları: ✓Her gruptaki değerler kendi içinde normal dağılım göstermelidir. Dağılımlar oldukça çarpıksa ve gruplardaki denek sayıları eşit değilse problemler ortaya çıkacaktır. Ayrıca gruplardaki denek sayılarının az olması da önemli bir problem olabilir.
Varyans analizi tekniği grup ortalamalarının karşılaştırılması imkânını verdiği gibi, varyans unsurlarını tahmin etme olanağı da sağlamaktadır (Kaps ve Lamberson 2004). Ancak bu tekniğin kullanılabilmesi için bazı ön şartların (normal dağılım, homojenlik, bağımsızlık, eklenebilirlik) yerine getirilmesi gerekir.
Duyarlılık analizi olarak da bilinen parametrik analiz, farklı geometrik veya fiziksel parametrelerin veya her ikisinin sorunun çözümü üzerindeki etkisinin incelenmesidir.
İstatistiki bazı konuları baz alarak oluşturulan parametreleri ile yapılan birçok işlev parametrik olarak değerlendirilmektedir. Parametrik belirli ölçümler ile belirli konuların oluşturulmasını sağlamaktadır. Parametrik kelime manası olarak ise bir veya birden fazla parametre olarak tanımlanmaktadır.
İstatistiksel parametrik testler, popülasyon ortalaması ve varyansı hakkındaki hipotezleri test etmek için kullanılan bir istatistiksel analiz türüdür.
p değeri 0,01 ile 0,05 aralığında; İstatistiksel olarak anlamlı fark vardır. p değeri 0,001 ile 0,01 aralığında; Yüksek düzeyde olarak anlamlı fark vardır. p değeri 0,001 den daha küçük ise; Çok yüksek düzeyde istatistiksel olarak anlamlı fark vardır.
İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.
İki ya da daha fazla örneklem ortalamasının anlamlı farklılık gösterip göstermediğini test eder. Tek yönlü varyans analizinin (One-Way ANOVA ) non-parametrik halidir. Anovanın sayıltıları karşılanmaz ise bu testi yapmamız gerekecektir.
İşaret Testinin Temel İlkesi
İşaret testi, verilerin medyanını değerlendirmek için kullanılan bir parametrik olmayan istatistiksel testtir. Temel ilkesi, örneklem verilerindeki sıralamaları kullanarak medyan değerinin belirli bir hipoteze göre test edilmesidir.
Normallik analizi sonucuna göre; veriniz normal dağılıyorsa çalışmanıza parametrik olan testlerle, normal dağılmıyorsa parametrik olmayan testlerle devam etmeniz gerekir.
✓Kruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri