Sonuç olarak sayımız; 4√2 haline gelmiş olacak. Bir sayının kök dışına çıkabilmesi içn bir sayının karesi olması gerekmektedir. Örneğin sorumuzdaki √32'nin içinde 4'ün karesi olan 16 olduğu için kök dışına 4 çıkar kalan 32/16=2 ise kök içinde kalır.
√3 kök dışına tam çıkmaz, irrasyonel bir sayıdır. √3 = 1 ve 2 arasında bir sayıdır ve yaklaşık değeri ise 1,73 olarak çıkar.
√36 kök dışına 6² olduğu için 6 olarak çıkar.
300 kök dışına 10√3 diye çıkar. Açılımı ise şu şekilde yapılır; √300=√100.3= 10√3 şeklinde olur. Örnek verecek olursak; √400 sayısını kök dışına çıkaralım. 300 sayısını nasıl kök dışına çıkardık isek bu da aynı o şekilde olacaktır.
İlgili 38 soru bulundu
Cevap: 324 sayısı kök dışına 18 olarak çıkar.
Cevap. Kök 33 kök dışına çıkamaz. Kök 33 olarak kalır.
√34 sayısı kök dışına çıkamaz. √34; √25 ile √36 arasındadır. √34 sayısı 5 ile 6 arasında olup 6'ya daha yakındır.
Doğrulanmış Cevap
örnek olarak kök 320 dediniz ve o sayıyı köklü şekilde almaya çalışalım. Bu sayı çarpanlarına ayırmak istiyorsak bir sayı karekök içinde ayrılabilmesi gerekmektedir yani örnek olarak 16 kök içinde 4 , 64 kök içinde 8 vb. bu sayılar kök içinde ayrılabilir.
Kök 5 kök dışına tam olarak çıkmaz. Çünkü rasyonel bir sayı değildir irrasyonel bir sayıdır.
√180 = √(2².3².5) olarak yazılabilir. Yani √180 = 2√45 = 3√20 = 6√5 olmak üzere üç değişik şekilde karekök dışına çıkar. √180 = 1√(2².3².5) şekilde de yazılabilir. Ama bu durumda 1 çarpmada etkisiz eleman olduğu için 180 dışarı çıkmamış olur.
Cevap. =12√5 olarak disari cikar.
Çünkü kök 2 kökten dışarı çıkamaz. Yalnızca yaklaşık değeri elde edilir. Bunun nedeni karesinin olmamasıdır. Kök 2 sayının yaklaşık değeri ise 1,41 olur.
Cevap:√35 kök dışarısına çıkamaz.
√30 sayısı için de aynı işlemi uygulayalım. 30 = 2 x 3 x 5 olur. Hiçbir asal sayı tekrarlanmamış. Bu sebep ile 30 sayısı kök dışına çıkamaz.
Topluluğumuz tarafından sevilenler. Merhaba, √38 Dışarı çıkmaz çünkü irrasyonel bi sayıdır.
Cevabımız; 41 sayısı kök dışına çıkamaz. Çünkü çarpanlarının içinde tam kare sayı bulunmaz. ⑅Tam kare sayılar tablosunu ekte belirttim.
Doğrulanmış Cevap
bunu dışarı çıkarmanın yolu ne ile neyi çarpsak 39 eder diye düşünürsün. 39 bir asal sayı olduğu için kendinden ve 1 den başka ortak böleni yoktur. Bu nedenle √39 olarak kalır. Başarılar.
√325 dışarıya tam sayı olarak çıkmaz. Çift olanlar dışarıya tek olanlar kök içine yazılır. Bu durumda; 5 √13 şeklindedir.
Cevap. 4 kök 21 olarak dışarı çıkar.
Karekök içinde bulunan bir sayının kök dışına çıkarılması için asal çarpanlarına ayrılması gerekmektedir. Bir sayı asal çarpanlarına ayrıldıktan sonra, kuvveti çift olan sayılar tam kare sayılar olarak nitelendirilir ve bu sayıları kuvveti 2'ye bölerek kök dışına çıkartabiliriz.
Kareköklü sayılarda kökün dışındaki sayının kök içine girmesi için kendisiyle çarpılır yani karesi alınır. Kök içindeki herhangi bir sayının karesi yoksa o sayı kök dışına çıkamaz, kök içinde kalır. Buna örnek olarak sorudaki ifade verilebilir. 2√30 şeklinde kök dışına çıkarılmış ifadenin bir diğer yazımı √120'dir.
Merhaba! Cevabımız 3√3'tür.
Cevap. √46 en sade halidir dışarı çıkamaz.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri