Sinüs ve Kosinüs fonksiyonları 1. f(x) = sin(x) işlevi dik üçgen'de karşı dik kenarın hipotenüse oranıdır. Koordinat Düzleminde "y" ekseni olarak tabir edilir. Bu işlevin tanım aralığı [-1,1] dir. Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz.
Sinüs, Sin şeklinde ifade edilir. Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir.
Trigonometrik işlevler
Sinüs işlevi (sin), karşı kenarın hipotenüse oranıdır.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
30 derecenin sinüsü Birim çember ya da 30-60-90 üçgeninden, bunun 1 bölü 2 olduğunu hatırlayabilirsiniz, ya da hesap makinamıza bakalım, kolay. Önce derece modunda olduğunuza emin olun, Sin 30, eşittir sıfır virgül 5. O halde burası,1 bölü 2 bölü 2'den, 1 bölü 4 çıkacak.
İlgili 44 soru bulundu
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
4-sin90=1'dir.
Sinüs alan formülü Alan (ABC) = Sinüs A açısı x b x c x 1/2 şeklinde bulunur. Bazı değerleri ve kuralları bilmek işlem kolaylığı sağlar. Dik üçgen ise; dik kenarın kendisi olur. Hipotenüsü olmayan 2 kenarın çarpılarak ikiye bölünmesi sonucunda alan hesabı yapılmaktadır.
Sinüs. α ölçülü açının gördüğü dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün sinüsü denir. sin α ile gösterilir. Kosinüs. α ölçülü açıya komşu olan dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün kosinüsü denir.
Sinüs cetveli; açıların, koniklerin ve eğimlerin ölçülmesinde, iş parçalarının, aparatların ve tezgahların ayarlanmasında kullanılır.
Sinx ile beraber cosx trigonometrik fonksiyon olarak ifade edilmiştir. Özellikle geometri üzerinden üçgenleri incelerken trigonometrik fonksiyon olarak sinx ve cosx ön plana çıkar. Uzun adlar ile sinüs ve kosinüs olarak bilinen yapılar olarak öne çıkar.
Matematikte üçgenler önemli bir yere sahiptir. Üçgenlerin açı-kenar bağlantıları, iç açılarını bulma, komşu açılarla ilişkileri gibi konularda Trigonometriden yararlanılmaktadır. Fonksiyonlar yardımıyla bu konuların çözülmesini sağlayan matematiğin alt dalına trigonometrik değerler denilmektedir.
Bu durumda yukarıda belirtilmiş olan cos2x açılımında "cos²x" ifadesinin görüldüğü yere 1 - sin²x yazılabilir. cos2x = 1 - 2sin²x şeklinde olur.
Kosinüs teoremi geometride üçgen üzerinde iki kenarı ve aralarındaki açı verildiği zaman bilinmeyen kenarı bulmak amacı ile kullanılan formül olmaktadır. - Cos90: 0 sayısına eşittir.
Sinüs teoremi, açı ile iki kenar verildiği zaman bilinmeyen bir açıyı bulmak ya da iki açı ile bir kenar verildiğinde bilinmeyen kenar uzunluğunu bulmak için kullanılır.
Bu değerlerle sin20'yi hesaplayabilirsiniz. Zincirlerin hesaplanması aşağıdaki gibidir: hesaplanan: sin20 = 3/5 = 0.6 Sin20 Diğer trigonometrik fonksiyonlar ve matematiksel görevlerle birlikte kullanılır. Ek olarak, SIN20 diğer tüm sinüs fonksiyonları olarak da kullanılır.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Sinüs 37 derecenin karşılığı 0,6 sayısına eşittir. Problemleri ilgili değerlerine 0,6 yazılarak sorunun çözümüne gidilebilir. Aynı zamanda kosinüs 53 derece ifadesi de sinüs 37 dereceye eşittir.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Sinüs ve Kosinüs fonksiyonları
1. f(x) = sin(x) işlevi dik üçgen'de karşı dik kenarın hipotenüse oranıdır. Koordinat Düzleminde "y" ekseni olarak tabir edilir. Bu işlevin tanım aralığı [-1,1] dir. Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz.
CotA= cosA/sinA şeklinde bulunur.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri