Bir 1 tan ya da tan 1 şeklinde ifade edilen değer 1 derecelik açının tanjant değeri demektir. Bu değer 1 derecelik açının sin değerinin 1 derecelik açının cos değerine bölünmesi ile bulunur.
Formülü cot(A)= 1/tan(A) = cos(A)/sin(A) = b/a şeklindedir.
Tanjant. α ölçülü açının karşısındaki dik kenarın uzunluğunun komşusundaki dik kenarın uzunluğuna oranına, α ölçüsünün tanjantı denir. tan α ile gösterilir. Kotanjant. α ölçülü açıya komşu olan dik kenarın uzunluğunun karşısındaki dik kenarın uzunluğuna oranına, α ölçüsünün kotanjantı denir.
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır.
TAN (Total Acid Number - Toplam Asit Sayısı) değeri, yağın bir mililitresindeki asidi nötralize edecek alkalen madde potasyum hidroksit (KOH) miktarının gram olarak ifadesidir. TBN değeri, rezerv alkaleni gösterdiği için kullanımda sürekli düşer. Laboratuvarımızda bu analizler ototmatik titratörle yapılmaktadır.
İlgili 38 soru bulundu
TanX=sinX/cosX şeklinde bulunur.
Bir üçgende bulunan x açısının tam karşısındaki kenarın komşu kenara olan oranı tan değeri olarak ifade edilir. Tan 90 = tanımsızdır.
Tanjant işlevi (tan), karşı kenarın komşu kenarı oranıdır.
2. f(x) = cos(x) işlevi dik üçgende Komşu dik kenarın hipotenüse oranıdır. Koordinat düzleminde "x" ekseni olarak tabir edilir.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
4-sin90=1'dir.
cos2x = 1 - 2sin²x şeklinde olur. Yazılmış olan cos2x ifadesinin açılımlarından bir diğeri de sin²li formül olmaktadır. cos2x = cos²x - sin²x şeklinde verilmiş olan açılımında bu kez sin²x görüldüğü yere "1-cos²x" yazılabilir. cos2x = 2cos²x - 1 şeklinde olur.
Bir 1 tan ya da tan 1 şeklinde ifade edilen değer 1 derecelik açının tanjant değeri demektir. Bu değer 1 derecelik açının sin değerinin 1 derecelik açının cos değerine bölünmesi ile bulunur.
Bir üçgendeki x açısının karşısında bulunan kenarın komşu kenara olan oranı tanjant olarak ifade edilmektedir. Kotanjant hesaplaması ise bir x açısının komşu kenarı ile kendi karşısındaki kenara oranı olarak ifade edilmektedir.
2.tanx= 1 - tan x=3 bulunur.
Birim çember üzerinde, orijinden geçen bir doğrunun x ekseniyle arasındaki, saat yönünün tersine doğru açının tanjant değeri, bu doğrunun tanjant ekseniyle kesiştiği noktanın y değerine (ordinatına) eşittir. 180'e bölümünden kalan 90 olan açılar da belirsiz (tanımsız) olur.
cot(0)= cos(0) sin(0) elde edilir.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
tanjant kırkbes 1'e esittir. tanjant 45 bire eşit değildir. tanjant 45 derece bire eşittir. 45 ile 45 derece farklı şeylerdir. inanmıyorsanız bilimsel hesap makinelerinde bir deneyin.
Sekant, trigonometrik bir fonksiyondur. Trigonometrik kosinüs fonksiyonunun çarpmaya göre tersi olarak tanımlanır. sec veya sc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün komşu dik kenara oranına sekant denir.
Tanjant fonksiyonunun mucidi olarak kabul edilen Habeş el-Hâsib de bu yüzyılda yaşamıştır. Yine aynı yüzyılda yaşayan El-Battani ile trigonometri büyük bir gelişme kaydetmiştir. El- Battani Batı'ya sinüs fonksiyonunu tanıtmış, tanjant, cotanjant ve küresel üçgenlerdeki cosinüs teoremini bulmuştur.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri