Trigonometrik sinüs fonksiyonunun tersi olarak da tanımlanabilir. cosec veya csc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün karşı dik kenara oranına kosekant denir. Kosekant ayrıca bir açının tümlerinin sekantına eşittir.
Bir dik üçgende hipotenüsün karşı dik kenar oranı cosec olarak adlandırılmaktadır. Bunun yanında cosec bir açının sekantının tümlerinin ölçüsü olmaktadır. Geometri üzerinden üçgenleri incelerken cosec fonksiyonu kullanılmaktadır. Cosec fonksiyonu geometride cosec x = 1 / sin x olarak ifade edilmektedir.
Sekant, trigonometrik bir fonksiyondur. Trigonometrik kosinüs fonksiyonunun çarpmaya göre tersi olarak tanımlanır. sec veya sc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün komşu dik kenara oranına sekant denir.
1-sec teriminin İngilizce Türkçe sözlükte anlamı
{k} Bir saniye! Bir dakikada altmış saniye vardır. - There are sixty seconds in a minute.
Kosekant sinüs fonksiyonunun çarpmaya göre tersi şeklinde ifade edilebilmektedir. Formül; csc(A)= 1/sinA = c/a şeklinde ifade edilmektedir.
İlgili 32 soru bulundu
Bir 1 tan ya da tan 1 şeklinde ifade edilen değer 1 derecelik açının tanjant değeri demektir. Bu değer 1 derecelik açının sin değerinin 1 derecelik açının cos değerine bölünmesi ile bulunur.
P(x,y) noktasında birim çembere çizilen teğetin x eksenini kestiği R noktasının apsisine θ nın sekantı ; y eksenini kestiği S noktasının ordinatına θ nın kosekantı denir. θ reel sayısını sec θ ile eşleyen fonksiyona sekant fonksiyonu; cosec θ ile eşleyen fonksiyona ise kosekant fonksiyonu denir.
Kosinüs işlevi (cos), komşu kenarın hipotenüse oranıdır.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Burada 2.sinx.cosx = sin2x olduğundan 1 + sin2x = 16/25 elde edilir.
Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın x eksenine göre koordinatıdır. Orijinden noktaya çizilen bir doğrunun x ekseniyle yaptığı açı kullanılarak ya da aynı açıya sahip bir dik üçgende, bu açının yanındaki kenarın hipotenüse bölümüyle hesaplanır.
MS 830'da Habash al-Hasib al-Marwazi ilk kotanjant tablosunu üretti. Muhammed ibn Jābir el-Harrānī el-Battānī (Albatenius) (MS 853-929) sekant ve kosekantın karşılıklı işlevlerini keşfetti ve 1° ile 90° arasındaki her derece için ilk kosekant tablosunu oluşturdu.
Bir çemberin çevresi 360 eş parçaya bölündüğü zaman bu eş yay parçalarından birini gören ; köşesi merkezde olan açının ölçüsüne 1 derece (1o ) denir. 1o nin 60 ta birine 1 dakika (1') denir. 1' nın 60 ta birine 1 saniye (1'') denir.
2. f(x) = cos(x) işlevi dik üçgende Komşu dik kenarın hipotenüse oranıdır. Koordinat düzleminde "x" ekseni olarak tabir edilir.
Tan2x Açılımı ve Konu Anlatımı
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır. Tan2x = tan(x+x) olarak ifade edilmektedir.
cos içindeki eksiyi yutar yani cos60 ile cos(-60) aynı şey. Cos (-) yi yutar sin dışarıya atar.
Asıl değerler
Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
cos(120) = -cos(60)
Bu değer üzerinden gedildiği vakit cos 120 değeri = - 3/5 olarak ifade edilir. Aynı zamanda bunu - 0,6 şekilde de anlatmak ve yazmak mümkün.
Kotanjant. α ölçülü açıya komşu olan dik kenarın uzunluğunun karşısındaki dik kenarın uzunluğuna oranına, α ölçüsünün kotanjantı denir.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Trigonometrik fonksiyonlar açılara dayanır ve matematikçiler genellikle ölçüm birimi olarak radyan kullanır. π, tam bir daire 2π radyanlık bir açıyı kaplayacak şekilde tanımlanan radyan cinsinden ölçülen açılarda önemli bir rol oynar. 180°'nin açı ölçüsü π radyan ve 1° = π/180 radyan'a eşittir.
Birim çember üzerinde, orijinden geçen bir doğrunun x ekseniyle arasındaki, saat yönünün tersine doğru açının tanjant değeri, bu doğrunun tanjant ekseniyle kesiştiği noktanın y değerine (ordinatına) eşittir. 180'e bölümünden kalan 90 olan açılar da belirsiz (tanımsız) olur.
"tan" simgesidir. Merkezi orijin olan çemberin, 1 birim yarıçaplı birim çemberdeki a=1 şeklinde b eksenine paralel çizilen doğruya tanjant ekseni olarak tanımlanmaktadır.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri