180 ve 360 derecelerde isim değişmez.
Meraklısına matematik ve geometri ispatları.Trigonometrik fonksiyonları hesaplanmasında neden 90 ve 270 dereceli açılar kullanıldığında isim değiştirir.Neden y ekseni isim değiştiren eksen ismini almıştır.
Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir. Bir üçgenin A açısının komşu kenarının hipotenüse uzunluğuna oranlanması şeklinde bulunabilir.
- Cos90: 0 sayısına eşittir.
cos(120) = -cos(60)
Bu değer üzerinden gedildiği vakit cos 120 değeri = - 3/5 olarak ifade edilir. Aynı zamanda bunu - 0,6 şekilde de anlatmak ve yazmak mümkün.
İlgili 16 soru bulundu
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
Asıl değerler
Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır.
30 derecenin sinüsü Birim çember ya da 30-60-90 üçgeninden, bunun 1 bölü 2 olduğunu hatırlayabilirsiniz, ya da hesap makinamıza bakalım, kolay. Önce derece modunda olduğunuza emin olun, Sin 30, eşittir sıfır virgül 5. O halde burası,1 bölü 2 bölü 2'den, 1 bölü 4 çıkacak.
Tan2x Açılımı ve Konu Anlatımı
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır. Tan2x = tan(x+x) olarak ifade edilmektedir.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
Sinüs. α ölçülü açının gördüğü dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün sinüsü denir. sin α ile gösterilir. Kosinüs. α ölçülü açıya komşu olan dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün kosinüsü denir. cos α ile gösterilir.
Çift fonksiyon
Geometriksel olarak ifade etmek gerekirse, bir çift fonksiyonun grafiği, y eksenine göre simetriktir. Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez. Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x).
180 ve 360 derecelerde isim değişmez.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Sinüs ve Kosinüs fonksiyonları
1. f(x) = sin(x) işlevi dik üçgen'de karşı dik kenarın hipotenüse oranıdır. Koordinat Düzleminde "y" ekseni olarak tabir edilir. Bu işlevin tanım aralığı [-1,1] dir. Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz.
4-sin90=1'dir. 6-tan90= tanımsızdır.
Bir üçgende bulunan x açısının tam karşısındaki kenarın komşu kenara olan oranı tan değeri olarak ifade edilir. Tan 90 = tanımsızdır.
Sekant, trigonometrik bir fonksiyondur. Trigonometrik kosinüs fonksiyonunun çarpmaya göre tersi olarak tanımlanır. sec veya sc olarak ifade edilebilir. Sonuç olarak bir dik üçgende, hipotenüs'ün komşu dik kenara oranına sekant denir.
Trigonometrik işlevler
Sinüs işlevi (sin), karşı kenarın hipotenüse oranıdır.
cot(0)= cos(0) sin(0) elde edilir.
Bu bağlamda bir üçgen içerisinden bakıldığı vakit, cos 53 değerinin 3/5 olduğunu söylemek mümkün. Diğer bir ifade ile 0,6 değeri üzerinden işlem görür.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri