Bir fonksiyonun birinci türevinin tanımlı ve sıfır olduğu noktalara durağan nokta denir. f ′ ( a ) = 0 ise, noktası fonksiyonunun bir durağan noktasıdır.
Dönüm noktaları fonksiyonun şeklini değiştiği noktalardır, yani "içbükeyden" "dışbükeye" veya tam tersi. Bunları bulmak için, ikinci türevin işaretinin değiştiği yerlere bakabiliriz. Birinci türevdeki kritik noktalar gibi, dönüm noktaları ikinci türevin sıfır veya tanımsız olduğu yerlerde oluşur.
Extremum: maximum veya minimum. y=f(x) f '(x)=0 yapan deger bulunur. x=x1 f ''(x1) >0 ise x=x1 noktasi bir minimum. f ''(x1) <0 ise x=x1 noktasi bir maximumdur.
Matematikçiler de öyle düşünmüştü ve bir şey için iyi bir isme karar vermekte nadir anlardan birini yaşadılar: Eyer noktaları. Tanıma göre, bunlar fonksiyonun bir yönde yerel maksimumu, ama başka bir yönde yerel minimumu olduğu noktalardır.
Tanım:8 �� = ��(��) fonksiyonu (�� ,��) aralığında tanımlı ve sürekli bir fonksiyon olsun. Bu aralıkta fonksiyonun türevinin olmadığı veya sıfıra eşit olduğu noktalara kritik noktalar denir.
İlgili 17 soru bulundu
Bir fonksiyonun birinci türevinin tanımlı ve sıfır olduğu noktalara durağan nokta denir. f ′ ( a ) = 0 ise, noktası fonksiyonunun bir durağan noktasıdır.
Bir noktanın kritik nokta olabilmesi için türevinin o noktada olmaması veya 0 olması yeterli değil, aynı zamanda kritik nokta adayının fonksiyonda tanımlı olması da gerekir! Ve şunu unutmamak gerekir, tüm fonksiyonların kritik noktaları olmak zorunda değildir!
Bir (a,b) noktasında f (x,y) 'nin semer nok- tası (saddle point), olması demek, (a,b) noktanının her komsulu˘gunda f (a,b) den küçük ve f (a,b) den büyük de˘gerlerin var olması demektir. Böyle olunca, f (a,b) noktası tıpkı bir semer üzerindeki durak noktasına benzer; ne min olur ne de max.
Bir yerel maksimum noktası, fonksiyonun artandan azalana yön değiştirdiği bir noktadır (bu nokta grafikte bir "tepe"dir). Benzer şekilde, bir yerel minimum noktası, fonksiyonun azalandan artana yön değiştirdiği bir noktadır (bu nokta grafikte bir "dip"tir).
Bir mutlak maksimum nokta, fonksiyonun en büyük olası değerine ulaştığı noktadır. Benzer şekilde, bir mutlak minimum nokta, fonksiyonun en küçük olası değerine ulaştığı noktadır.
Bir fonksiyonun tanım aralığında aldığı en küçük değere o fonksiyonun mutlak minimum değeri, bu değeri aldığı nokta ya da noktalara da mutlak minimum noktası denir.
Bir fonksiyonun tersinin de fonksiyon olabilmesi için bu fonksiyonun bire bir (1-1) ve örten olması gerekir. Bir fonksiyon ile tersi 1. açıortay doğrusuna göre simetriktir. y = f (x) ise x = f¹(y) dir. Bir fonksiyonun tersini; x yerine y, y yerine x yazıp bu yeni y' yi çekerek elde ettiğimiz x' li ifade ile buluruz.
Fonksiyon, matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Fonksiyon, 17. yüzyılda matematiğin kavramlarından biri olmuştur. Fizik, mühendislik, mimarlık ve birçok alanda kullanılmaktadır.
Matematikte, genellikle kalkülüste, durgunluk noktası ya da değişim noktası, bir tek değişkenli diferansiyellenebilir bir fonksiyonun türevinin sıfır olduğu noktadır (bir diğer deyişle fonksiyonun eğiminin sıfır olduğu noktadır). Öyle bir noktadır ki fonksiyon azalmayı ve artmayı bırakır o noktada.
Çok değişkenli bir fonksiyonun bir eyer noktasının yerel bir minimum/maksimum olup olmadığını test etmek için, fonksiyonun o noktadaki ikinci dereceden kestirimine bakın. Bu ikinci dereceden kestirimin maksimumu/minimumu olup olmadığını analiz etmek daha kolaydır. Bunlar ikinci dereceden formlar olarak bilinir.
Türev, bir fonksiyonun ne hızla değiştiğini ölçer. Bir fonksiyon belirli bir aralıkta sabit kalıyor ise, aralıktaki türevi de sıfırdır.
Sürekli iki fonksiyonun çarpımıyla elde edilen fonksiyonu da x R için süreklidir. bu hallerden her birinde fonksiyona birinci neviden süreksiz fonksiyon, x0 noktasına da birinci neviden süreksizlik noktası denir.
bağıl extremumla yerel extremum aynı anlama gelio.fonksiyonun 1. türevini alıp sıfıra eşitlediğinde bulduğun kökler senin bağıl ekstremum noktalarındır.
Genel olarak, eğer her girdinin bir özgün çıktısı varsa, fonksiyon tersinirdir. Yani, her çıktı tam olarak bir girdi ile eşleşmelidir. Böylece, eşleşme tersine çevrildiğinde, bu gene bir fonksiyon olacaktır!
Eğer bir fonksiyonun grafiği başlangıç noktasına göre simetrikse, bu fonksiyon tek fonksiyon olarak adlandırılır. Bu görsel olarak, şekli başlangıç noktası etrafında döndürdüğünüzde şeklin değişmeden kalacağı anlamını taşır.
Bir fonksiyonunun tersinin tersi yine o fonksiyonun kendisine eşittir. Bir fonksiyonun tersi ile bileşkesi ise birim fonksiyona eşit olur.
Eğer bir aralıkta y = f(x) in grafiğinin her kirişi ilgili grafik parçasının üstünde kalıyorsa fonksiyona bu aralıkta konveks fonksiyon (veya yukarı bükey fonksiyon), altında kalıyorsa konkav fonksiyon (veya aşağı bükey fonksiyon) denir.
Özet: Sinüs x'in türevinin, kosinüs x ve kosinüs x'in türevinin de eksi sin x olduğunu biliyorsanız, Bölme kuralını kullanarak, tanjant x'in türevini, sekant kare x olarak bulursunuz!
Ters türev, türevin tersi olan ilişkidir. Örneğin, 'nin türevinin olduğunu biliyoruz. Bu, 'in ters türevinin olduğu analmını taşır. Her fonksiyon, bir ters türev ailesine sahiptir.
Durağan :Anadolu yarım adasının kuzeyinde Karadeniz Bölgesinin Batı bölümünde yer alan Sinop İlinin bir İlçesidir. Matematiksel konumu olarak 35-36 doğu meridyenleri (Boylam) ile 41-42 Kuzey paralelleri (Enlem) arasında yer alır.İlçe Merkezi alüvyonlu toprak ile kaplı olup Gökırmak Vadisi üzerindedir.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri