İki yada daha çok grup arasında fark olup olmadığının testinde, İki değişken arasında bağ olup olmadığının testinde, Gruplar arası homojenlik testinde, Örneklemden elde edilen dağılımın istenen herhangi bir teorik dağılıma uyup uymadığının testinde (uyum iyiliği testi) kullanılır.
4.1. BAĞIMLI GRUPLARDA Kİ-KARE TESTİ:
Bu test, nitelik olarak belirtilen bir değişken yönünden aynı bireyden değişik zaman veya durum-da elde edilen iki gözlemin farklı olup olmadığını test etmek için kullanılır.
Ki-kare testi, bir veya daha fazla kategoride beklenen ile görülen arasındaki farkları belirlemenin istatistiksel bir yoludur. Araştırmacılar bu parametrik olmayan testi, aynı örneklem popülasyonu içindeki kategorik değişkenleri karşılaştırmak için kullanmaktadır.
Bağımlı gruplara Ki-kare testi yerine Mc-Nemar testi uygulanır. 2- Ki kare dağılımı süreklidir. Beklenen frekanslardan herhangi biri 5'den küçük ise dağılım kesikli ve çarpık olur. Bu yüzden test sonucu elde edilen ki-kare değeri ki-kare dağılımına uygunluk gösteremez.
Çok gözlü tablolar iki kalitatif verinin birbiriyle karşılaştırılmasında kullandığımız karşılaştırma metodudur. Bu veri Cinsiyet, meslek, kurum, Well's risk grubu, HT varlığı/yokluğu vb gibi bir veridir.
İlgili 36 soru bulundu
Ki-kare testi, gözlemlenen hücre sayıları ile satırlar ve sütunlar ilişkisiz olduğunda ne bekleyeceğini ölçen bir test ölçer.
herhangi birinde beklenen gözlem sayısı 5'in altında ise burada Fisher's exact ki‐kare testi uygulanır.
Ki-kare (X2) değeri gözlenen ve beklenen frekanslar arasındaki farkı ölçmek için kullanılan istatistiksel bir test istatistiğidir. Çaprazlama tablosunda gözlenen ve beklenen sayılar arasındaki karelenmiş farkların toplamının beklenen sayılara bölünmesiyle hesaplanır.
Serbestlik derecesi= 2 -1 = 1. serbestlik derecesi ne uyumlu sütunda p = 0.05 kullanılmalıdır.
Tek Örneklem Ki-kare Testi, ikiden fazla gruptan (düzeyden) oluşan bir bağımsız değişken bulunduğu durumda, bu grupların toplam içindeki oranlarının, istenen oranlardan ne kadar farklılaştığını tespit etmek için kullanılır.
Bu hipotezlerden açıkça görülmektedir ki sınanma için kullanılan hipotez anakütle parametreler değerleri hakkında değildir ve bir istatistiksel nitelik hakkındadır. Böylece Pearson ki-kare testi bir parametrik olmayan istatistik örneğidir.
Bağımsızlığın ki-kare testi, iki kategorik alanın bağımsız olup olmadığını belirler. Alanlar bağımsız değilse, ilişkilendirilir. Aşağıdaki yordam, ki-kare değerinin nasıl hesaplanmakta olduğunu açıklamalıdır: Alanların bağımsız olduğu varsayımıyla beklenen sıklığı belirleyin.
Örneğin, Alt için 1, Üst için 4 değerini belirtirseniz, ki-kare testi için yalnızca 1 ile 4 arasındaki tamsayı değerleri kullanılır. Beklenen Değerler. Varsayılan olarak, tüm kategoriler beklenen değerlere eşittir. Kategoriler, kullanıcı tarafından belirtilen beklenen oranlara sahip olabilir.
Uygunluk testi için bilgi verilmemesi veya eksik ya da güncel olmayan bilgi verilmesi halinde, hangi ürün ya da hizmetlerin müşteriye uygun olduğu tespit edilemeyecektir.
ki kare testinin iki farklı amacı vardır. ilki, örneklem ve evren dağılımlarını karşılaştırmak( uyum iyiliği-goodness of fit) diğeri ise iki değişkenin istatistiksel olarak bağımsız olup olmadığını test etmektir (bağımlılık testi).
Uygunluk testi, bankalar ve aracı kurumlar tarafından pazarlanan ya da müşteri tarafından talep edilen ürün ya da hizmetin müşteriye uygun olup olmadığının değerlendirilmesi amacıyla, müşterinin söz konusu ürün veya hizmetin taşıdığı riskleri anlayabilecek bilgi ve tecrübeye sahip olup olmadığının tespit edilmesidir.
Tanımlar. Bağımsız örneklem t testi, iki bağımsız grup arasında ortalamalara bakarak istatistiksel olarak anlamlı bir fark olup olmadığını test etmek için kullanılır.
Bu dağılım, gamma dağılımından elde edilir.
Testin sonucu küçük bir p (≤ 0.05) ise bu sıfır hipotezinin geçersiz olduğuna dair güçlü bir kanıttır. Testin sonucu büyük bir p (> 0,05) ise alternatif hipotezin zayıf olduğu anlamına gelir, dolayısıyla sıfır hipotez reddedilemez.
Yates süreklilik düzeltmesinin toplam gözlem sayısı 40dan düşük olduğu (N<40) hallerde kullanılması tavsiye edilmektedir. Ancak birçok istatistikçi her 2 × 2 şekilde bağımlılık tablosu şekline konulan veri için Yates süreklilik düzeltmesi kullanmaktadırlar.
McNemar testini bağımlı gruplarda nominal bir değişken açısından fark olup olmadığını test etmek için kullanıyoruz.
T testi İki örneklem grubu arasında ortalamalar açısından fark olup olmadığını araştırmak için kullanılır. T testi, bir gruptaki ortalamanın diğer gruptaki ortalamadan önemli derecede farklı olup olmadığını belirler. T testinde kritik nokta “2”dir. T testi her zaman iki farklı ortalamayı yada değeri karşılaştırır.
Sınıflanabilen (Nominal): Bir nominal niteliği ; gözlemlerin adları, yada sembolleri olarak düşünebiliriz. Bu değerler bir kategoriyi veya durumu temsil eder ve bu nedenle kategorik özellik olarak adlandırılırlar.Sınıfların aralarında hiyerarşik bir yapı yoktur. Araba markası, renk,meslek,il,cinsiyet gibi…
Chi-Square testi (Ki Kare), genellikle değişkenler arasındaki ilişkileri test etmek için kullanılır. Chi-Square testinin yokluk hipotezi (H0), popülasyondaki kategorik değişkenler arasında hiçbir ilişki olmadığıdır; yani değişkenler bağımsızdırlar.
(Kİ-KARE) ÇÖZÜMLEMESİ
çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır. (Aralarındaki fark anlamlı mı?) olasılıkla ortaya çıkar.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri