Bir dik üçgende, Kotanjant ise bir dar açının komşu dik kenar uzunluğunun hipotenüsün uzunluğuna oranına o dar açının kosinüsü denir. Bir X açısının kosinüsü “cos X” olarak ifade edilmektedir. Kotanjant, tanjant fonksiyonunun çarpmaya göre tersidir şeklinde ifade edilir.
Bir üçgendeki x açısının karşısında bulunan kenarın komşu kenara olan oranı tanjant olarak ifade edilmektedir. Kotanjant hesaplaması ise bir x açısının komşu kenarı ile kendi karşısındaki kenara oranı olarak ifade edilmektedir.
Bir üçgenin A açısının komşu kenarının hipotenüse uzunluğuna oranlanması şeklinde bulunabilir. Tanjant kısaca tan olarak ifade edilir. Formül tan(A)? karşı kenar/komsu kenar = a/b = sinA/cosA şeklindedir.
Kotanjant II. bölgede negatiftir. Sinüs II. bölgede pozitiftir. bulunur.
Kotanjant bir üçgende açınınkomşusu olan kenarın aynı açının karşısındaki kenarına oranıdır. Örneğin B açısının kotanjantı c/b dir. Üçgen örneğinden gittiğimizden bazı yanlış anlaşılmalar olabilir. Örneğin bu ifadelerin dik üçgen olması nedeniyle sadece 0°-90° aralığında olmasını bekleyebilirsiniz.
İlgili 38 soru bulundu
commanding officer of troops (cot) i.
Kotanjant, tanjant fonksiyonunun çarpmaya göre tersidir şeklinde ifade edilir. Buradan anlaşılacağı üzere kotanjant 1 / açının tanjant değerine, bununla birlikte Bir açının kosinüs değeri / Diğer açının sinüs değerine" ve aynı zamanda da diğer komşu kenar / hipotenüs değerine eşit olarak ifade edilmektedir.
Tanjant ve Kotanjant işlevleri
4. f(x) = cotx işlevi dik üçgende Komşu dik kenarın karşı dik kenara oranıdır. Koordinat düzleminde Birim çembere "y" ekseninin pozitif yönünde teğet ve y eksenine diktir. Tanım aralığı (-∞,+∞) dır.
MS 830'da Habash al-Hasib al-Marwazi ilk kotanjant tablosunu üretti.
Trigonometri 4 | Tanjant ve Kotanjant Fonksiyonu | 11.SINIF MATEMATİK MatBook - YouTube.
birinci bölge: bütün => adından da anlaşılabileceği gibi kosinüs, sinüs, kotanjant ve tanjantın her biri bu bölgede pozitiftir. ikinci bölge: sınıf => bu bölgede yalnızca sinüs pozitiftir.
Kosinüs işlevi (cos), komşu kenarın hipotenüse oranıdır.
Tanjant. α ölçülü açının karşısındaki dik kenarın uzunluğunun komşusundaki dik kenarın uzunluğuna oranına, α ölçüsünün tanjantı denir. tan α ile gösterilir. Kotanjant. α ölçülü açıya komşu olan dik kenarın uzunluğunun karşısındaki dik kenarın uzunluğuna oranına, α ölçüsünün kotanjantı denir.
Kosinüs teoremi, iki kenar ve aralarındaki açı verildiğinde üçüncü kenarı bulmada ve üç kenar da verildiğinde açıları hesaplamada kullanılır. Ayrıca bu teorem, sadece dik üçgenlerde uygulanan Pisagor bağıntısını tüm üçgenler için geneller.
Orijinden noktaya çizilen bir doğrunun x ekseniyle yaptığı açı kullanılarak ya da aynı açıya sahip bir dik üçgende, bu açının yanındaki kenarın hipotenüse bölümüyle hesaplanır.
*Cot Değeri Nedir? Bir dik üçgende seçilen köşenin bitişik köşesinin kenar uzunluğunun karşı köşenin kenar uzunluğuna oranı kotanjik değer olarak bilinir. A açısının kotanjantı, coTA olarak gösterilebilir.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Trigonometri olmayınca otomobiller yürümez, trenler gitmez, uçaklar uçmaz, santrallar enerji üretmezdi. Çember, bilim ve teknikte olduğu kadar sanatta, mimari tasarımlarda ve gündelik yaşamımızda da önemlidir.
Tanjant fonksiyonunun mucidi olarak kabul edilen Habeş el-Hâsib de bu yüzyılda yaşamıştır. Yine aynı yüzyılda yaşayan El-Battani ile trigonometri büyük bir gelişme kaydetmiştir. El- Battani Batı'ya sinüs fonksiyonunu tanıtmış, tanjant, cotanjant ve küresel üçgenlerdeki cosinüs teoremini bulmuştur.
Çift fonksiyon
Geometriksel olarak ifade etmek gerekirse, bir çift fonksiyonun grafiği, y eksenine göre simetriktir. Yani y eksenine göre yansıtıldıktan sonra bile grafiği değişmez. Çift fonksiyonlara örnek, |x|, x2, x4, cos(x) ve cosh(x).
Birim çember üzerinde, orijinden geçen bir doğrunun x ekseniyle arasındaki, saat yönünün tersine doğru açının tanjant değeri, bu doğrunun tanjant ekseniyle kesiştiği noktanın y değerine (ordinatına) eşittir. 180'e bölümünden kalan 90 olan açılar da belirsiz (tanımsız) olur.
cos2x = 1 - 2sin²x şeklinde olur. Yazılmış olan cos2x ifadesinin açılımlarından bir diğeri de sin²li formül olmaktadır. cos2x = cos²x - sin²x şeklinde verilmiş olan açılımında bu kez sin²x görüldüğü yere "1-cos²x" yazılabilir. cos2x = 2cos²x - 1 şeklinde olur.
Sin2x = 2.sinx.cosx denklemine eşittir. Bu açılım da her bir açının yarısını alacak biçimde kullanıldığı anlatılmaktadır. En basit olarak Sin40 = 2.sin20.cos20 olarak karşımıza çıkar. Bu formül bazı sorularda bir açı verilip onun yarısının ya da iki katının sinüs değeri arandığı durumlarda rahatlıkla kullanılmaktadır.
Asıl değerler
Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır.
Tan2x Açılımı ve Konu Anlatımı
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır. Tan2x = tan(x+x) olarak ifade edilmektedir.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri