Birinci bölgede cos ve sinüs 0-1 aralığında olduğundan; tanjant, sinüsün 0 ve 1 aralığında bir sayıya bölünmüş hali oluyor. Bir sayıyı 0-1 aralığındaki başka bir sayıya böldüğümüzde elimizdeki sayı büyüdüğünden tanjant her zaman daha büyük oluyor.
Şeklinde göstermek mümkündür. Verildiğine göre bu açıların sinüs değerlerine göre sıralanması nasıl olur? Çözüm şu şekilde olur: c = sin 105, sin 75'e eşit olur. Tüm açıların birinci bölgede olmasından dolayı sinüs değeri büyüdükçe, bu değer de büyüyecektir.
Sinüs, kosekant, tanjant ve kotanjant IV. bölgede negatiftir. Bu değerleri ifadede yerine koyalım.
200° III. bölgede yer aldığından ve tanjant fonksiyonu bu bölgede + işarete sahip olduğundan: tan 200° ün işareti , + dır. Buradan işaretler sırasıyla; -, -, + şeklinde bulunur.
Bir 1 tan ya da tan 1 şeklinde ifade edilen değer 1 derecelik açının tanjant değeri demektir. Bu değer 1 derecelik açının sin değerinin 1 derecelik açının cos değerine bölünmesi ile bulunur.
İlgili 15 soru bulundu
Trigonometrik işlevler
Sinüs işlevi (sin), karşı kenarın hipotenüse oranıdır.
Asıl değerler
Örneğin sin(0) = 0, fakat sin(π) = 0, sin(2π) = 0, vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, fakat arcsin(0) = π, arcsin(0) = 2π, vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır.
Sinüs, Sin şeklinde ifade edilir. Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir.
Tanjant bir üçgende açının karşısındaki kenarın aynı açının komşusu olan kenarına oranıdır. Örneğin B açısının tanjantı b/c dir. Kotanjant bir üçgende açınınkomşusu olan kenarın aynı açının karşısındaki kenarına oranıdır.
Birim çember üzerinde, orijinden geçen bir doğrunun x ekseniyle arasındaki, saat yönünün tersine doğru açının tanjant değeri, bu doğrunun tanjant ekseniyle kesiştiği noktanın y değerine (ordinatına) eşittir. 180'e bölümünden kalan 90 olan açılar da belirsiz (tanımsız) olur.
Bir üçgende bulunan x açısının tam karşısındaki kenarın komşu kenara olan oranı tan değeri olarak ifade edilir. Tan 90 = tanımsızdır.
Sinüs ve Kosinüs fonksiyonları
Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz. 2. f(x) = cos(x) işlevi dik üçgende Komşu dik kenarın hipotenüse oranıdır. Koordinat düzleminde "x" ekseni olarak tabir edilir. Tanım aralığı f(x) = sinx işleviyle aynıdır.
Sinüs, Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Örneğin sinüs 90 derece tam olarak 1'e karşılık geliyor.
*Tan Değeri Nedir? Bir dik üçgende seçilen bir köşenin karşı tarafının bitişik köşenin karşı tarafına oranına teğet değeri denir. A açısının tanjantına tanA denir.
Bu değerlerle sin20'yi hesaplayabilirsiniz. Zincirlerin hesaplanması aşağıdaki gibidir: hesaplanan: sin20 = 3/5 = 0.6 Sin20 Diğer trigonometrik fonksiyonlar ve matematiksel görevlerle birlikte kullanılır. Ek olarak, SIN20 diğer tüm sinüs fonksiyonları olarak da kullanılır.
30 derecenin sinüsü Birim çember ya da 30-60-90 üçgeninden, bunun 1 bölü 2 olduğunu hatırlayabilirsiniz, ya da hesap makinamıza bakalım, kolay. Önce derece modunda olduğunuza emin olun, Sin 30, eşittir sıfır virgül 5. O halde burası,1 bölü 2 bölü 2'den, 1 bölü 4 çıkacak.
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır.
2. Bölge. 90º-180º arasında y eksenindeki değer sıfırdan büyük olduğu için sinüs pozitif, x eksenindeki değer sıfırdan küçük olduğu için kosinüs değeri negatif olacaktır. Sinüs ve kosinüs değerlerinin zıt işaretli olması tanjant ve kotanjant değerlerini negatif yapacaktır.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
Cos 60 = 1/2 şeklinde ifade edilmektedir. Verilmiş olan 30 ve 60 ile 90 derece üzerinde özel üçgen kapsamında bu değer ortaya çıkar. Yani işlem olan temel olarak 30/60/90 üçgeni şeklinde ifade edilmektedir. Bu ifade üzerinden üçgen üzerindeki kenar uzunlukları verildiği vakit, cos60 değeri kolaylıkla bulunabilir.
tanjant kırkbes 1'e esittir. tanjant 45 bire eşit değildir. tanjant 45 derece bire eşittir. 45 ile 45 derece farklı şeylerdir. inanmıyorsanız bilimsel hesap makinelerinde bir deneyin.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri