Trigonometrinin kökeni M.Ö. 2000-3000'li yıllara, Babilliler'e kadar uzanmaktadır. Babilliler'in trigonometriye en büyük katkıları daireyi 360 parçaya bölerek bugünkü birim çemberin temelini atmış olmalarıdır. Babilliler'in dışında üçgenin kenar ve açılarıyla Mısırlılar ve Eski Yunanlılar da ilgilenmişlerdir.
İlk trigonometrik tablo görünüşe göre artık "trigonometrinin babası" olarak bilinen (Nicaealı - İznikli) Hipparchus (MÖ 180-125) tarafından derlendi. Hipparchus, bir dizi açı için bu açılara karşılık gelen yay ve kiriş değerlerini tablo haline getiren ilk kişiydi.
Trigonometri (Yunanca trigōnon "üçgen" + metron "ölçmek"), üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı.
Trigonometri olmayınca otomobiller yürümez, trenler gitmez, uçaklar uçmaz, santrallar enerji üretmezdi. Çember, bilim ve teknikte olduğu kadar sanatta, mimari tasarımlarda ve gündelik yaşamımızda da önemlidir.
Trigonometrik fonksiyonlar sayesinde gezegenlerin hareketlerini izah edebilmeye başladık, teknolojimizi geliştirebildik, ışığın doğasını anlayabildik, Evren'deki yerimizi çözebildik. Trigonometri olmasaydı, bugünkü keşiflerimizin önemli bir bölümü mümkün olmazdı.
İlgili 18 soru bulundu
üçgenlerin açıları ve uzunlukları arasındaki ilişkiyi açıklayan matematik dalı olan Trigonometri, erken kaşiflerin yıldızları çizmesine ve denizlerde gezinmesine yardımcı oldu. Günümüzde trigonometri, mimariden makinelere kadar her şeyde bulunur.
Bütün konuyu iyi öğrenmeyi hedefleyerek aşağıda paylaşılan basamakları uygularsanız konunun zannedildiği kadar zor olmadığını, aksine zevkli bir konu olduğunu da göreceksiniz. Trigonometri dik üçgendeki açılar ve kenar uzunları arasındaki oranların bilgisidir. Konuyu geometriyle bağlayan en önemli alan da dik üçgendir.
Bir çemberin çevresi 360 eş parçaya bölündüğü zaman bu eş yay parçalarından birini gören ; köşesi merkezde olan açının ölçüsüne 1 derece (1o ) denir. 1o nin 60 ta birine 1 dakika (1') denir.
Trigonometrik fonksiyonlar, trigonometrik oranlar olarak bilinen açılarla ilişkili olan fonksiyonlardır. Bu fonksiyonlar, genellikle sinüs ("sin"), kosinüs ("cos") ve tanjant ("tan") olarak adlandırılır. İleri düzeyde sekant ("sec"), kosekant ("csc") ve kotanjant ("cot") gibi fonksiyonlar da kullanılabilir.
Trigonometrik fonksiyonlar açılara dayanır ve matematikçiler genellikle ölçüm birimi olarak radyan kullanır. π, tam bir daire 2π radyanlık bir açıyı kaplayacak şekilde tanımlanan radyan cinsinden ölçülen açılarda önemli bir rol oynar. 180°'nin açı ölçüsü π radyan ve 1° = π/180 radyan'a eşittir.
Bir üçgende bulunan x açısının tam karşısındaki kenarın komşu kenara olan oranı tan değeri olarak ifade edilir. Tan 90 = tanımsızdır.
Trigonometride önem taşıyan üç temel işlevin ne olduğu yukarıda yazılmaktadır. Tanjant sözü edilen işlevlerden birini teşkil etmektedir. Tan2x'in açılımı şu şekilde karşımıza çıkmaktadır: Tan2x = 2.tanx/1-tan2x olmaktadır.
HAREZMİ (770-840)
Matematik'te bir çok kuralı ilk bulup uygulayan kişidir. Mesela sıfır rakamını keşfederek ilk kullanan ve matematiğe kazandıran alimdir. Bugünkü cebir ve trigonometrinin kurucusu sayılır.
8. Sınıf Trigonometri 1 (TEOG) - Konu Anlatımı ve Soru Çözümleri - YouTube.
Cebiri ilk kez geometriye uygulayan kişi olan Sabit Bin Kurra'nın hayatını derledik. SABİT BİN KURRA KİMDİR? Sâbit bin Kurra, 836 yılında Harran'da doğdu. İslâm matematiğinin oluşum dönemine katkıda bulunan Harranlı matematikçilerin başında gelmektedir.
9.sınıf Matematik | Trigonometri -1 - YouTube.
Kosinüs teoremi geometride üçgen üzerinde iki kenarı ve aralarındaki açı verildiği zaman bilinmeyen kenarı bulmak amacı ile kullanılan formül olmaktadır. - Cos90: 0 sayısına eşittir.
Bu değer üzerinden gedildiği vakit cos 120 değeri = - 3/5 olarak ifade edilir. Aynı zamanda bunu - 0,6 şekilde de anlatmak ve yazmak mümkün.
Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar.
Bir dik üçgende hipotenüs en uzun, "karşı" kenar verilen bir açının karşısındaki, "komşu" kenar ise verilen bir açının yanındaki kenardır. Dik üçgenlerin kenarlarını tanımlamak için, özel kelimeler kullanırız.
Sınıfta Trigonometri Var Mı ? Hayır, 10. Sınıf Matematik konularında Trigonometri bulunmuyor.
Trigonometrinin kökeni M.Ö. 2000-3000'li yıllara, Babilliler'e kadar uzanmaktadır. Babilliler'in trigonometriye en büyük katkıları daireyi 360 parçaya bölerek bugünkü birim çemberin temelini atmış olmalarıdır. Babilliler'in dışında üçgenin kenar ve açılarıyla Mısırlılar ve Eski Yunanlılar da ilgilenmişlerdir.
Sinüs, Sin şeklinde ifade edilir. Sin(A)= karşı kenar / hipotenüs = a/c şeklinde olmaktadır. Kosinüs kısaca cos olarak gösterilmektedir. Formülü ise Cos(A)=komşu kenar/hipotenüs = b/c şeklindedir.
Sinüs. α ölçülü açının gördüğü dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün sinüsü denir. sin α ile gösterilir. Kosinüs. α ölçülü açıya komşu olan dik kenarın uzunluğunun hipotenüs uzunluğuna oranına, α ölçüsünün kosinüsü denir.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2025 Usta Yemek Tarifleri