Parametrik test varsayımları (normal dağılım) yerine getirildiğinde ölçümle belirtilen sürekli bir değişken yönünden aynı bireylerin, değişik iki zaman ya da durumdaki ölçümleri arasında fark olup olmadığını test etmek için kullanılan bir önemlilik testidir.
Diğer parametrik testler
t-testi ve ANOVA'ya ek olarak, eşleştirilmiş t-testi, tek yönlü ANOVA, iki yönlü ANOVA, tekrarlanan ölçümler ANOVA ve karma tasarım ANOVA dahil olmak üzere farklı uygulamalarda kullanılan birkaç başka istatistik parametrik test vardır.
Öncelikle bu testleri kabaca tanımakta fayda var. Aradaki farkı çok basit bir şekilde açıklamak gerekirse parametrik testler ortalamalar üzerinden çalışırken parametrik olmayan testler medyan değer üzerinde çalışır. Medyan değer sıralanmış bir veri setindeki orta değer olarak basitçe tanımlanabilir.
Hipotez, Araştırma Hipotezi İstatistiksel Hipotez olmak üzere iki tipte sınıflandırılabilir.
İlgili 44 soru bulundu
Parametrik testler teorik açıdan incelendiğinde en önemli koşulunun normal dağılıma sahip olmak olduğu görülmektedir. Toplanan veriler normal dağılım gösterdiğinde istatistikler de normal dağılıma sahip olmaktadır. Fakat veriler normal dağılım göstermese de parametrik testlerin kullanılması mümkündür.
Parametrik olmayan testler, anakütle ile ilgili hiçbir varsayımda bulunmayan testlerdir. Değişkenlerin ölçeklerinin ad (nominal), sıra (ordinal) veya aralık (interval) olması durumunda tercih edilirler.
Buraya baktığımızda doğrudan bağımlı gruplar t testi durumu ama sayıltıları sağlanmadığı için non parametrik olan testi Wilcoxon testi yapılması gerekmektedir.
✓Kruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır.
t testi, iki ortalama arasındaki farkın istatistiksel manidarlığını test etmek için kullanılan parametrik bir tekniktir.
Hipotezler üzerinde çeşitli işlemler yapılarak ifadenin “doğruluğu/yanlışlığı” araştırılır. Popülasyonu incelemeye yönelik yapılan çalışmalar ve bunların raporlanması ile hipotezin kabul edilip edilmeyeceğinin belirlenmesi işlemine hipotez testi denir.
Parametrik istatistik, verilerin rastgele dağılım esasına uyduğunu kabul eden ve olasılık dağılımı parametrelerine göre çıkarımlar yapan istatistik dalıdır. En iyi bilinen ilkel istatistik yöntemleri parametriktir. Genellikle parametrik yöntemler, parametrik olmayanlara göre daha fazla kabullenme yaparlar.
İşte bu nokta çok önemli: Normal dağılmak, ya da dağılmamak… İstatistiksel hipotez testi aşamasında normal dağılım varsayımına bağlı kaldığımızda, parametrik testler üzerinden analizlerimizi gerçekleştiriyoruz. Kısaca sayısal ölçümlerimiz normal dağılıma uygun olduğunda parametrik testleri kullanacağız.
Normal dağılım göstermeyen gruplarda üç veya daha fazla sayıda grubun ortalamaları arasındaki farklılığın anlamlılığını test amacıyla kullanılan bir tekniktir.
Diğer istatistiksel yöntemlerde olduğu gibi regresyon analizi de parametrik ve parametrik olmayan yöntemler olarak incelenebilir. Parametrik yöntemlerin kullanımı güçlü varsayımlar gerektirirken, parametrik olmayan yöntemlerde bu varsayımlar gerekli değildir.
Duyarlılık analizi olarak da bilinen parametrik analiz, farklı geometrik veya fiziksel parametrelerin veya her ikisinin sorunun çözümü üzerindeki etkisinin incelenmesidir.
İki ya da daha çok örneklem ortalamasının birbirinden manidar bir farklılık gösterip göstermediğinin test edilmesinde kullanılır.
Bu durumda, gruplar arası ortalamaları test etmek için parametrik olmayan bir teste başvurmamız gerekiyor. İşte, en az üç bağımsız grup arasında normallik koşulu sağlanmadığında ortalama karşılaştırma testlerinden Kruskal-Wallis testini kullanıyoruz.
Bu durumda ANOVA tablosunda verilen F ve p değerlerini kullanamayız. Bunun yerine SPSS'te sunulan Brown–Forsythe F (1974), ve Welch's F (1951) istatistikleri yoluyla elde edilen F değeri ve buna bağlı p değeri kullanılır. Welch's F (1951) istatistikleri kullanılabilir.
İki ya da daha fazla örneklem ortalamasının anlamlı farklılık gösterip göstermediğini test eder. Tek yönlü varyans analizinin (One-Way ANOVA ) non-parametrik halidir. Anovanın sayıltıları karşılanmaz ise bu testi yapmamız gerekecektir.
Verilerimizin İlişkili Örneklemler için Tek Yönlü Varyans Analizi için gereken parametrik teknik varsayımlarını karşılamadığı durumlarda Friedman Testi kullanılabilir.
Mann-Whitney U testi, bağımsız örneklem t testine alternatif olan non-parametrik bir testtir. Bu test, benzer popülasyondan gelen iki bağımsız grup arasında ortalama farkına bakmak, ve gruplar arasında fark ya da eşitliği belirlemek için kullanılır.
Nonparametrik testler için çoğu zaman, verilerin, rassal ve bağımsız olarak elde edilmesi ve nominal veya ordinal ölçek kullanılması yeterlidir.
Wilcoxon işaretli sıralar testi, ilişkili (bağımlı) örneklemler t-testinin nonparametrik karşılığıdır. Yani, diğer şartlar aynı kalmakla beraber bağımlı değişkene ait ölçümlerin; aralık veya oran ölçeğinde olduğu ancak normal dağılım şartını sağlamadığı veya sıralama ölçeğinde olduğu durumlarda kullanılır.
İki Ortalama Arasındaki Farkın Önemlilik Testi. Ölçümle belirtilen sürekli bir değişken yönünden bağımsız iki grup arasında fark olup olmadığını test etmek için kullanılan bir önemlilik testidir.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri