Aradaki farkı çok basit bir şekilde açıklamak gerekirse parametrik testler ortalamalar üzerinden çalışırken parametrik olmayan testler medyan değer üzerinde çalışır.
Nonparametrik testler için çoğu zaman, verilerin, rassal ve bağımsız olarak elde edilmesi ve nominal veya ordinal ölçek kullanılması yeterlidir.
Kısacası, ANOVA bir parametrik çıkarımsal metodu olup anakütle ortalamaları arasında farkın olup olmadığını sınamak için kullanılır.
Parametrik testlerde ham veriler üzerinden ortalama, varyans gibi ölçütler elde edilerek işlemler yapılır. Parametrik olmayan testlerde ise ham veriler sıralanır ve sıra numaraları verilir. İşlemler bu sıra numaraları üzerinden yapılır. Parametrik testler parametrik olmayan testlere göre daha güçlü testlerdir.
İlgili 19 soru bulundu
Aradaki farkı çok basit bir şekilde açıklamak gerekirse parametrik testler ortalamalar üzerinden çalışırken parametrik olmayan testler medyan değer üzerinde çalışır. Medyan değer sıralanmış bir veri setindeki orta değer olarak basitçe tanımlanabilir.
p değeri 0,01 ile 0,05 aralığında; İstatistiksel olarak anlamlı fark vardır. p değeri 0,001 ile 0,01 aralığında; Yüksek düzeyde olarak anlamlı fark vardır. p değeri 0,001 den daha küçük ise; Çok yüksek düzeyde istatistiksel olarak anlamlı fark vardır.
İki ya da daha fazla örneklem ortalamasının anlamlı farklılık gösterip göstermediğini test eder. Tek yönlü varyans analizinin (One-Way ANOVA ) non-parametrik halidir. Anovanın sayıltıları karşılanmaz ise bu testi yapmamız gerekecektir.
ANOVA testi en az üç grup arasındaki ortalamaları karşılaştırmak için kullanılan bir istatistiksel analiz metodudur. Analiz aşamasında elimizde en az üç gruba sahip ve gözlemlerin bağımsız olduğu bir kategorik değişken; ayrıca bir de sayısal verilerden oluşan bir nicel değişken bulunmalıdır.
Diğer istatistiksel yöntemlerde olduğu gibi regresyon analizi de parametrik ve parametrik olmayan yöntemler olarak incelenebilir. Parametrik yöntemlerin kullanımı güçlü varsayımlar gerektirirken, parametrik olmayan yöntemlerde bu varsayımlar gerekli değildir.
✓Kruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır.
One-Way ANOVA'nın non-parametrik karşılığıdır.
Wilcoxon testi, ilişkili iki ölçüm setine ait puanların arasındaki farkın anlamlılığını test etmek amacıyla kullanılır.
Parametrik olmayan testler, anakütle ile ilgili hiçbir varsayımda bulunmayan testlerdir. Değişkenlerin ölçeklerinin ad (nominal), sıra (ordinal) veya aralık (interval) olması durumunda tercih edilirler.
Kısaca k>2 bağımsız grup arasında ortalamalar arası farklılıkları test etmek için doğru istatistik testi: Kruskal-Wallis.
T testi iki örneklem arasındaki karşılaştırmada kullanılırken ANOVA testleri ikiden fazla örneklemin karşılaştırılmasında kullanılır. t testi ve ANOVA testleri parametrik testlerdendir.
ANOVA tek başına üç veya daha fazla grubun aritmetik ortalamalarını kümülatif olarak karşılaştırır; bu karşılaştırmalardan en az birisi anlamlı olduğunda ANOVA sonucu da anlamlı bulunur.
Bu durumda ANOVA tablosunda verilen F ve p değerlerini kullanamayız. Bunun yerine SPSS'te sunulan Brown–Forsythe F (1974), ve Welch's F (1951) istatistikleri yoluyla elde edilen F değeri ve buna bağlı p değeri kullanılır. Welch's F (1951) istatistikleri kullanılabilir.
Parametrik olmayan testler, örneğin Mann-Whitney U testi, Wilcoxon işaret testi, Kruskal-Wallis testi gibi testlerdir. Parametrik olmayan testlerin avantajı, daha esnek bir analiz sağlamaları ve dağılım varsayımlarını karşılamayan verilerle çalışabilmeleridir. Ancak, parametrik testlere göre daha az güçlü olabilirler.
grup; GRUP1=GRUP2=GRUP3) grubun ortalamalarının eşit olması durumunu test ediyoruz. Yani p değeri 0.05'ten büyük olursa bu hipotezi kabul ediyor eğer p değeri 0.05'ten küçük ise bu hipotezi reddediyor ve 3 grup arası farklılık mevcut diyoruz.
Mann-Whitney U testi, bağımsız örneklem t testine alternatif olan non-parametrik bir testtir. Bu test, benzer popülasyondan gelen iki bağımsız grup arasında ortalama farkına bakmak, ve gruplar arasında fark ya da eşitliği belirlemek için kullanılır.
İstatistiksel Değerler
Evrenin ya da örneklemin genel özelliklerini gösteren sayısal değerlerdir. Bu değerlerin sembolleri evrenin ya da örneklemin özelliği olup olmadığına göre farklılık gösterir. Kişi Sayısı: Evrenin ya da örneklemin büyüklüğüdür. Evren için N; örneklem için ise n olarak gösterilir.
0,05'ten yüksek bir p-değeri istatistiksel olarak anlamlı değildir ve sıfır hipotezi için güçlü kanıtlara işaret eder. Bu, sıfır hipotezini koruduğumuz ve alternatif hipotezi reddettiğimiz anlamına gelir. İstatistiksel olarak anlamlı bir sonuç, bir araştırma hipotezinin doğru olduğunu kanıtlayamaz.
Her ne kadar p değerinin 0,05 den küçük olması tıp literatüründe “istatistiksel olarak anlam- lı” kabul edilse de araştırmacının isteğine göre 0,01 olarak ta kabul edilebilir. P değeri ne kadar küçük olursa H0 hipotezini reddetmek için elimizdeki kanıt o kadar yüksek olur.
Benzer sorularSıkça sorulan sorular
DuyuruReklam alanı
Popüler SorularSıkça sorulan sorular
© 2009-2024 Usta Yemek Tarifleri